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Abstract—The conventional method of modeling CMUTs use
the isotropic plate equation to calculate the deflection, leading to
deviations from FEM simulations including anisotropic effects of
around 10% in center deflection. In this paper, the deflection is
found for square plates using the full anisotropic plate equation by
use of the Galerkin method. Utilizing the symmetry of the silicon
crystal, a compact and accurate expression for the deflection can
be obtained. The deviation from FEM in center deflection is
<0.1%. The deflection was measured on fabricated CMUTs using
a white light interferometer. Fitting the anisotropic calculated
deflection to the measurement a deviation of 0.5-1.5% is seen for
the fitted values. Finally it was also measured how the device
behaved under increasing bias voltage and it is observed that
the model including anisotropic effects is within the uncertainty
interval of the measurements.

I. INTRODUCTION

Precise modeling of capacitive micromachined ultrasonic
transducers (CMUT) is important for an efficient design pro-
cess. The deflection w(x,y) is an important parameter that
influences several basic CMUT parameters such as pull in volt-
age and capacitance. Most existing analytical approaches use
the isotropic plate equation to calculate the deflection [1], [2].
However, when using fusion bonding fabrication technology
the plate usually consists of crystalline silicon, which is an
anisotropic material. The isotropic approach is then invalidated
and this results in deviations in the deflection compared to
finite element modeling (FEM) and measurements. Therefore,
to get precise modeling of these CMUTs the anisotropy of
silicon needs to be taken into account.

For circular plates a simple and exact solution for the
deflection exists, but this is not the case for square plates.
Existing solutions to the deflection of square plates is based on
series expansions with either trigonometric [3] or polynomial
basis functions [4]. None of these, however, take the anisotropy
of the plate into account.

Previously a model was made for calculating the deflection
for an anisotropic plate with circular geometry [5], and in
this paper the model is expanded to include square plates as
well. The approach used to solve the full anisotropic plate
equation is the Galerkin method [6]. Utilizing the symmetry
of the silicon crystal, a compact and accurate approximation
of the deflection can be obtained. The calculated deflection
is compared to the solution for corresponding isotropic cases,
a finite element model (FEM) and measurements performed
on fabricated devices. Furthermore, the calculated deflection
is used to find the stable position of the CMUT plate for a

given bias voltage. Equivalent measurements are performed as
well and the theory is compared to these.

II. THE ISOTROPIC PLATE EQUATION

Conventionally the deflection w(x,y) of a CMUT with a
thin plate is modeled using the isotropic plate equation [3]
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where p is the applied pressure difference across the plate. The
flexural rigidity is given by

Di =
E

12(1−ν2)
h3 (2)

with E being Young’s modulus, ν being Poisson’s ratio, and h
being the thickness of the plate. For rectangular and square
plates no simple exact solution exists to this equation and
approximate methods have to be used. The traditional isotropic
approach is based on a series expansion of the deflection and
the center deflection for a thin clamped square plate having
side length 2L is [3]

w0,isotropic = 0.0202448
L4 p
Di

(3)

However, the plate material is often not isotropic and (1) and
(2) are therefore no longer valid. Using the fusion bonding fab-
rication technique the plate usually consist of silicon which is
an anisotropic material with a diamond cubic crystal structure.
For plates made on silicon (111) substrates, Young’s modulus
and Poisson’s ratio are constant and the isotropic plate equation
can be used. However, for other silicon substrates, such as
silicon (011) and silicon (001) which are most often used,
Young’s modulus and Poisson’s ratio are strongly anisotropic
and this leads to inaccurate deflection expressions.

III. ANISOTROPIC PLATE EQUATION

The solution is to use the generalized plate equation. This
is a differential equation for the deflection, w(x,y), of a thin
anisotropic plate exposed to a uniform load p given by [7], [8]
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TABLE I. ROOM TEMPERATURE (300K) STIFFNESS COEFFICIENTS FOR
LOW DOPED N-TYPE CRYSTALLINE SILICON [10].

cc
11 cc

12 cc
44

165.6 GPa 63.9 GPa 79.5 GPa

The plate coefficients k1 to k4 and the anisotropic flexural
rigidity depend on the elastic constants of the plate material
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where Ceff
pq are elements in the effective stiffness matrix. Notice

that the stiffness of the plate is no longer expressed through
Young’s modulus and Poisson’s ratio but directly through the
stiffness values.

The stiffness matrix is the relation between stress and strain
[9]

σc = ccεc, or εc = scσc. (6)

Here superscript c denotes the crystallographic coordinate
system, so cc is the stiffness matrix and sc = (cc)−1 the
compliance matrix in this coordinate system. Having a thin
plate the stresses in the z direction can be ignored and plane
stress assumed. Using the six vector notation, the relation
between stress and strain becomes
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Depending on the symmetry of the crystal (7) can be further
reduced. For silicon with a cubic crystal structure it becomes

Cc
eff =

( cc
11 cc

12 0
cc

12 cc
11 0

0 0 cc
44

)
. (8)

The stiffness elements in this matrix are known from mea-
surements and shown in Table I [10]. It is noted that all
elements in (8) have the superscript c which means that
they are known in the crystallographic coordinate system.
However, the plate equation is valid in the plate coordinate
system which is not necessarily the same. To illustrate this
further the crystallographic and the plate coordinate systems
can be seen in Fig. 1. The solid coordinate system along
the [100] direction is where the stiffness values for silicon
is known and the dashed system shows the rotated coordinate
system for the plate where the stiffness values needs to be
calculated. Having silicon as plate material and performing
standard cleanroom fabrication, the plate will usually be on
a (001) substrate and aligned to the wafer flat. Flat aligning
is to the 〈110〉 direction and the plate coordinate system will
be rotated ψ = 45◦. A transformation of the stiffness matrix
between the two coordinate systems is needed and the resulting
effective stiffness matrix for the present case becomes [8]
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Fig. 1. The two coordinate systems, solid lines are the crystallographic system
aligned to 〈100〉 direction and the dashed lines the plate system aligned to
〈110〉 direction.

TABLE II. SELECTED VALUES FOR THE PLATE COEFFICIENTS AND
ANISOTROPIC FLEXURAL RIGIDITY FOR PLATES ON A SILICON (001)

SUBSTRATE [8].

Orientation ψ k1 k2 k3 k4 12Da/h3[GPa]
[100] 0 0 2.81329 0 1 140.958
[110] π/4 0 1.32413 0 1 169.618

It is seen that the plate now have an orthotropic structure.
Using the stiffness elements from (9) in (5) it follows that k1 =
k3 = 0 and k4 = 1, so aligning the plate to the flat simplifies
the plate equation (4) to

∂4w
∂x4 + k2

∂4w
∂x2∂y2 +

∂4w
∂y4 =

p
Da

(10)

The same is the case for aligning the plate along the [100]
direction where (8) is used giving the same values for k1, k3
and k4. For these two special cases the coefficients in the plate
equation is summerized in Tabel II.

IV. SOLVING THE PLATE EQUATION

Having a rectangular or square plate makes analytical
deflection calculations complicated and approximate methods
must be used to solve the generalized plate equation. With
the anisotropic approach the Galerkin method [6] can be used
to find approximate expressions for the deflection of a thin
anisotropic square plate. In the most common case for CMUTs
the plate is fabricated on a silicon (001) substrate and aligned
to the [110] direction. For this orthotropic square plate with
sidelengths 2L the relative deflection is found to [8], [11]
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where the plate parameter is defined as

β =
182+143k2

1432+91k2
(12)

Eqn. (11) and (12) is also valid for the plate aligned to the
[100] direction on a silicon (001) substrate.2
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Fig. 2. Normalized deflection of a square plate of silicon (001) calculated
using both the isotropic approach for [100] and [110] directions, using (15)-
(13) and k2 = 2 and the anisotropic approach using k2 = 1.32413. The circles
represent the deflection calculated by FEM.

The center deflection can be written

w0,Si(001) =
77(1432+91k2)

256(16220+11k2(329+13k2))

L4 p
Da

(13)

Note that the enter deflection depends only on the k2 coeffi-
cient. For flat alignment it is found by inserting k2 into (12) that
β= 0.23920. This results in a normalized deflection surface for
the plate aligned to the 〈110〉 direction given by

w
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and the center deflection becomes

w0|Si(001),〈110〉 = 0.0219611
L4 p
Da

(15)

Comparing (3) and (15) it is seen that they are very similar
containing the same parameters but different coefficients and
the anisotropic instead of the isotropic flexural rigidity.

Fig. 2 shows a comparison between the analytical solution
using the Galerkin method for a square plate of silicon (001),
the isotropic solutions corresponding to [100] or [110] direc-
tions and finite element (FEM) simulations made using the
full anisotropic stiffness matrix (using the stiffness coefficient
in Table I) in COMSOL. The calculated deflections are nor-
malized to the FEM center deflection. Excellent agreement is
shown between the anisotropic case and FEM with a deviation
of less than 0.1 % whereas the isotropic approach leads to
deviations in the center deflection of around 10 % for both
[100] and [110] directions.

V. CMUT APPLICATION

Many important design parameters for CMUTs depend
on the deflection of the plate. By using static analysis it is
possible to find the stable position of the plate when applying

a certain bias voltage. The stable position is easiest expressed
through the center deflection and is the position where the
strain force balance the electrostatic and pressure forces. The
center deflection is found from energy considerations. The total
energy of the system consists of three terms:
1) Strain energy. Found by integrating the strain energy density

Us =
1
2

∫ L

−L

∫ L

−L

∫ h/2

−h/2
ε ·σ dxdydz. (16)

The strain is calculated from (11) and the stress is found from
(7) using the anisotropic effective stiffness matrix (9). The
resulting strain energy becomes
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2) Energy due to applied pressure. This is calculated from the
pressure load on the plate

Up =−
∫ L

−L

∫ L

−L
pw dxdy (18)

Up,Si(001),[110] =
256L2 pw0(7+2β)

1575
=−1.216pw0L2 (19)

3) Electrostatic energy. Found from the capacitance of the
device

Ue =
Q2

2Ct
(20)

where the total capacitance Ct of the square plate is found
using a Taylor expansion.
The total force on the system is then found by differentiating
the total potential energy with respect to the center deflection.
From this the stable center position of the plate can be found
for a given applied voltage as the point where the total force
is zero.

VI. COMPARISON TO MEASUREMENTS

CMUTs with square plates have been fabricated using
fusion bonding. The fabricated devices have a 65x65 µm wide
and 2.37 µm thick silicon plate with a gap height of 405 nm
and a 198 nm thick insulating oxide at the bottom of the cavity.
The deflection was measured with a Sensofar PLu Neox 3D
Optical Profiler using white light interferometry.

Fig. 3 shows a measured cross section of the normalized
deflection for the fabricated device. It is normalized in both
center deflection and distance across the plate to compare the
shape of the measured deflection with the calculated deflection.
The red curve is a fit made to the measurements using the
anisotropic model. As the cross section is taken through y = 0
the equation used for fitting is a reduced version of (11)

w f it = w0
[
1− (x/L)2]2 [1+β(x/L)2

]
(21)

Both the center deflection and the plate parameter β is fitted.
As it is seen in the figure the fitted value for β is 0.243 which3
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Fig. 3. Normalized deflection cross section from measurement on a fabricated
CMUT. The red curve is a fit made with (21).

matches very well with a deviation of 1.5% from the calculated
value of 0.23920 for this type of plate on silicon (001) substrate
aligned to the [110] direction. The center deflection found from
the fit has a deviation of 0.5% compared to the measurement.

Measurements with a DC voltage applied was also per-
formed and the results is shown in Fig. 4. Here it is seen
how the center deflection varies with the applied voltage and
how it deflects more when approaching the pull-in voltage
as expected. The center deflection for the measurements is
found as the average of 10 cells. The errorbars corresponds to
plus/minus two standard deviations. A theoretical curve made
from the stable position analysis in section V is plotted as
well. It is seen that the anisotropic theory matches well with
the measurement as it is within the error margin. Also the
pull-in voltage is in good agreement as it was measured to be
206 V for this design, compared to an expected value of 203 V
from the anisotropic model.

VII. CONCLUSION

Due to the anisotropy of Young’s modulus and Poisson’s
ratio for crystalline silicon, deviations between analytical mod-
els and FEM or measurements of up to 10 % is observed.
It has been shown how to simplify the full anisotropic plate
equation by utilizing the symmetry of the silicon crystal and
how to solve the equation for a square plate using the Galerkin
method. This results in a compact solution for thin square
CMUT plates on a (001) silicon substrate aligned to the [110]
direction (flat aligning), which predicts the deflection with an
accuracy of less than 0.1% compared to FEM. Furthermore,
the deflection was measured on fabricated devices and fitting
the anisotropic calculated deflection to the measurement a
deviation of 0.5-1.5% is observed in the fitted parameters. The
stable position for varying bias voltage was also found using
the anisotropic theory and comparing this to measurements it
is seen that the theory is within the uncertainty interval of the
measurements.

Fig. 4. Measured center deflection for increasing bias voltage. The solid red
curve represents the anisotropic calculation of the stable position and the blue
is the measurements.
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