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Abstract—The axial resolution in medical ultrasound is directly
linked to the emitted ultrasound frequency, which, due to tissue
attenuation, is selected based on the depth of scanning. The
resolution is determined by the transducers impulse response,
which limits the attainable resolution to be between one and
two wavelengths. This can be improved by deconvolution, which
increase the bandwidth and equalizes the phase to increase reso-
lution under the constraint of the electronic noise in the received
signal. A fixed interval Kalman filter based deconvolution routine
written in C is employed. It uses a state based model for the
ultrasound pulse and can include a depth varying pulse and
spatially varying signal-to-noise ration. An autoregressive moving
average (ARMA) model of orders 8 and 9 is used for the pulse,
and the ARMA parameters are determined as a function of depth
using a minimum variance algorithm using averaging over several
RF lines. In vivo data from a 3 MHz mechanically rotating probe
is used and the received signal is sampled at 20 MHz and 12 bits.
In-vivo data acquired from a 16th week old fetus is used along
with a scan from the liver and right kidney of a 27 years old male.
The axial resolution has been determined from the in-vivo liver
image using the auto-covariance function. From the envelope of
the estimated pulse the axial resolution at Full-Width-Half-Max
is 0.581 mm corresponding to 1.13 λ at 3 MHz. The algorithm
increases the resolution to 0.116 mm or 0.227 λ corresponding to
a factor of 5.1. The basic pulse can be estimated in roughly 0.176
seconds on a single CPU core on an Intel i5 CPU running at 1.8
GHz. An in-vivo image consisting of 100 lines of 1600 samples
can be processed in roughly 0.1 seconds making it possible to
perform real-time deconvolution on ultrasound data by using
dual or quad core CPUs for frame-rates of 20-40 Hz.

I. DECONVOLUTION

Linear ultrasound imaging can accurately be described as
a convolution between the spatial scattering map and the
ultrasound field [1]. This convolution model basically con-
sists of a one-dimensional pulse convolved with the spatial
impulse responses to give the full three-dimensional field.
The one-dimensional pulse essentially determines the axial
resolution of the image and depends on both the transducer
used and the patient. Many authors have suggested to use
various deconvolution algorithms to enhance the resolution
of the images. Several have been based on the Wiener filter
[2], which is most easily defined in the frequency domain.
It is easy to implement and fast, but it neglects the depth
dependence of the one-dimensional pulse that changes as a
function of depth due to the dispersive attenuation in the
human body. Also the signal-to-noise ratio varies throughout
the images. This stems from both the increase in noise due
to the time-gain compensation amplifier as well as the spatial

variation of the scattering. This varies from strong reflections
from boundaries, through intermediate scattering in the liver
to the weak scattering from cysts and blood. Keeping the
covariance ratio between the noise power and the reflection
power throughout the image will give noise in weak scattering
regions and less than ideal resolution enhancements in high
scattering regions. A good deconvolution algorithm should,
thus, take these spatial variations into account.

Mendel [3] has developed a fixed interval Kalman filter [4]
based algorithm for deconvolution of seismic signals. This al-
gorithm is ideally suited for clinical ultrasound deconvolution
as both the covariance ratio and the pulse can change from
sample to sample. Furthermore it uses efficient parametric
models for the pulse. It has been used in initial clinical
trials on ultrasound data by Jensen et al. [5]. The purpose
of this paper is to show the obtained clinical performance and
demonstrate that a C library implementation of the method
can be made to run in real-time on todays high-end multi-core
CPUs. The paper introduces the various steps in the algorithm
for pulse estimation, covariance estimation and deconvolution
in Sections II. Validation results are shown in Sections III and
IV for simulated data. Finally the performance for in-vivo data
is given in Section V.

II. DECONVOLUTION ALGORITHM

The complete deconvolution algorithm consists of three
parts: pulse estimation, covariance estimation, and the Kalman
based deconvolution algorithm. The first part estimates the
one-dimensional pulse using a single input, single output
ARMA (Auto Regressive Moving Average) model:

(1+a1z−1 +a2z−2 · · ·+anz−n)y(k) =

(1+ c1z−1 + · · ·+ cnz−(n−1))e(k)

where y(k) is the measured signal and e(k) is the reflection
signal. The parameters a,c are estimated using a number of
RF lines combined. The algorithm is described in detail in [6].

The covariance estimation is performed by finding the
covariance of the RF data in a region and then dividing by
the lag zero autocorrelation value of the estimated pulse. This
relies on the assumption that

Ry(τ,~r) = Re(τ,~r)∗Rp(τ,~r) = Pe(~r)Rp(τ,~r)
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Fig. 1. Mean of the estimated pulse ± three standard devotion. The true
pulse is also shown.

where Rx is the autocorrelation of signal x, and~r is the spatial
location for the estimation. It is assumed that the reflection
sequence is white, zero mean Gaussian.

The parameters are then used in the deconvolution algorithm
described by Mendel [3], [7] and used by Jensen et al. [5],
where it is described in detail.

III. PULSE ESTIMATION VALIDATION

The pulse estimation algorithm is validated by using a
synthetic example with known parameters and then calculating
a number of estimates to evaluate the accuracy.

The ARMA(6,6)1 model used is given by:

ar(q) = 1.0−2.3249q−1 +1.590q−2 +1.0265q−3

−2.2165q−4 +1.3192q−5 −0.2665q−6 (1)
ma(q) = 1.0−0.7478q−1 −0.5027q−2 +0.4022q−3

−0.5254q−4 +0.3912q−5 +0.0747q−6

This model is convolved with a Gaussian, random signal with
unit variance and the model orders and signals are then fed to
the pulse estimation algorithm. The input signal has 1000 lines
and 10 independent signals that are all used in the estimation.
The experiment is repeated 100 times. The mean estimated
waveform ± three standard deviations are shown in Fig. 1
on top of the true impulse response. It can be seen that the
estimation is unbiased and that a very low standard deviation
is attained.

All 100 experiments took 17.6 seconds to conduct under
Matlab using a single core on an Intel i5 CPU running on
a portable PC with a clock frequency of 2.4 GHz. This
also includes generating the synthetic data. A single pulse
estimation can, thus, be conducted in less then 0.176 seconds
for a single CPU corresponding to more than 5 frames per
second. Often the view is not changed so often, and the pulse
only needs to be estimated for a change in view. Therefore
this should be a sufficient frame rate for real time imaging.

1An ARMA(4,6) model indicates that the order of the AR part is 4 and the
order of the MA part is 6.
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Fig. 2. Estimated reflection signal (blue line) and true reflection sequence
(red line).

IV. DECONVOLUTION CODE VALIDATION

The deconvolution algorithm is validated using synthetic
data and the ARMA(6,6) model mentioned in the previous
Section. A synthetic signal consisting of 1600 samples and
100 lines is made. For λ/4 sampling this corresponds to a
penetration depth of 400 λ, which is roughly around the limit
for a traditional B-mode image. No noise is added to the signal
in the first example.

The routine estimates the ARMA model for the pulse using
all the data, and the covariance map for the image is estimated
from the parameters along with the reflection signal. The result
for the first line and the first 300 samples in shown in Fig.
2, where the blue line is the estimated reflection signal and
the true reflection sequence is the red line. There is nearly
a complete overlap, so the magnitude is correctly estimated
without bias along with the correct placement and amplitude
of the reflections.

The experiment has been conducted 100 times with a new
set of 1600 x 100 samples and this took 10.2 seconds to
execute the deconvolution part on a single core on an Intel
i5 CPU running on a portable PC with a clock frequency
of 2.4 GHz. This gives an execution time of 102 ms/image
and it is, thus, possible to make roughly 10 frame per second
on a standard CPU. A four core CPU should be able to
process around 40 frames/s giving real time deconvolved B-
mode imaging with the C code split to the four cores.

The next example shows the influence of noise on the
deconvolved response. Random Gaussian noise has been added
to the image for different ratios with the same amount of data
as in the previous example. The pulse has then been estimated
using all the data and then used in the deconvolution algorithm.
The power of the noise is input to the routine and it estimates
the covariance of the reflection sequence before performing
the deconvolution.

The power of the difference between the true reflection
signal and the estimated reflections as function of signal-to-
noise ratio is shown in Fig. 3. A gradual improvement is seen
with the increase in signal-to-noise ratio until there essentially
is no difference between the two signals at roughly 50-60 dB.
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Fig. 3. Error power in estimated reflection signal compared to true reflection
sequence for different signal-to-noise ratios.

The results are highly accurate for large signal-to-noise
ratios whereas a ratio below 30 dB gives a worse result. Part of
the reason for the degraded result is that the basic pulse also
is poorly estimated and the amplitude is significantly lower
than for the actual pulse. This gives a higher estimate of the
reflection power and the estimated signal therefore has a larger
amplitude than the reference signal. But as long as the SNR
is around 40 dB or higher a very high resolution is attained.
It should here be noted that a true pulse is found here, and
in a real example some approximations to the actual pulse is
made due to the employment of an ARMA model.

The last example uses clinical data acquired with a 3 MHz
concave round transducer obtained from a fetus in the 19th
week. The data was sampled at 20 MHz and no filtration
was performed on it. The image consists of 130 lines with
0.88 degrees between lines acquired in the counter clockwise
direction. Data from sample 401 is used and 2.700 samples are
used both in the pulse estimation and in the deconvolution. An
ARMA(9,8) model is used and a fixed model is estimated for
all depths. The covariance of the noise has been measured in
a water bath without any reflectors in and is input as a fixed
value into the model. Another possible way to measure the
noise covariance is to take a stable phantom, measure e.q. 10
images and subtract the mean of all measurements from the
individual ones. The residual will then be the noise, which can
be inserted into the deconvolution routine. The original image
is shown in Fig. 5 with a dynamic range of 50 dB. A Hilbert
transform is used to find the envelope of the data.

After pulse estimation the covariance of the reflection
sequence is found. The result of this is shown in Fig. 4. It
can be seen how the covariance varies over the image and this
is taken into account in the deconvolution routine. A large
signal-to-noise ratio will give a very sharp image and for a
low signal-to-noise ratio a more modest enhancement is made.

This can also be seen in the deconvolved image in Fig. 6,
where a much sharper image is attained. At the same time the
displayed signal is not getting poor in the black areas for the
amniotic fluid, where the signal-to-noise ratio is low.
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Fig. 4. Estimated covariance map of the reflection strength.
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In−vivo image of fetus
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Fig. 5. Original image of fetus in the 19th week.
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In−vivo deconvolved image of fetus
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Fig. 6. Resulting deconvolved image of the fetus.
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Fig. 7. Original image of the liver and the right kidney.
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In−vivo deconvelved image of right kindey and the liver
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Fig. 8. Deconvolved image of the liver and the right kidney.

V. RESOLUTION MEASURES

The resolution obtained in the deconvolved images can be
determined from the auto-covariance function of the resulting
signal as

Rc(τ) =
M

∑
i=1

N

∑
k=1

(z(k, i)− z̄(k, i))(z(k+ τ, i)− z̄(k, i))

where z(k, i) is either the RF signal or the corresponding
deconvolved signal for the i’th line in the image at sample
k, N is the number of samples and M is the number of lines.
z̄(k, i) is the mean value of the signal. Rc(τ) is found from
a region in the image and averaged over it and reveals the
correlation length of the data.

The method has been tested on an in-vivo image of a liver
and the right kidney as shown in Fig. 7 with a dynamic range
of 50 dB.
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Fig. 9. Estimated envelope of the auto-covariance function for both the RF
signal and the resulting deconvolved signal.

The pulse estimation is performed in the upper part of
the liver, where a homogeneous speckle pattern is found.
The region consists of the center 70 lines in the image each
containing 1000 samples. From the envelope of the estimated
pulse the axial resolution at Full-Width-Half-Max (FWHM)
is 0.581 mm corresponding to 1.13 λ for a center frequency
of 3 MHz. This resolution is typical for a high resolution
clinical system. The same figure of merit can be calculated
from the envelope of the auto-covariance function of both the
input and deconvolved signals. These are shown in Fig. 9. The
FWHM of Rc(τ) for the RF signal is 0.595 mm corresponding
to 1.16 λ. For the deconvolved data the FWHM is 0.1164 mm
corresponding to 0.227 λ. The increase in resolution in this
clinical example is, thus, a factor of 5.1.

VI. CONCLUSION

It has been demonstrated that clinical images can be de-
convolved and the resolution increased by a factor of 5.
Depending on the signal-to-noise ratio and the transducer used
a typical increase is between 2 and 5. The deconvolution can
be performed in around 0.1 to 0.5 s depending on the size of
the image. Employing modern multi-core CPUs should, thus,
make it possible to implement real-time deconvolution of in-
vivo ultrasound images on a modern PC.
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