31545 Medical Imaging systems

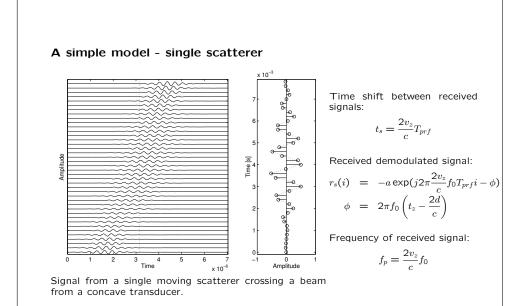
Lecture 8: Velocity imaging using ultrasound

Jørgen Arendt Jensen Department of Health Technology Section for Ultrasound and Biomechanics Technical University of Denmark

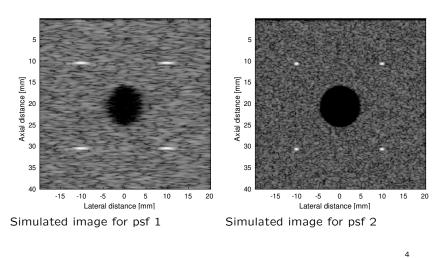
September 20, 2023

1

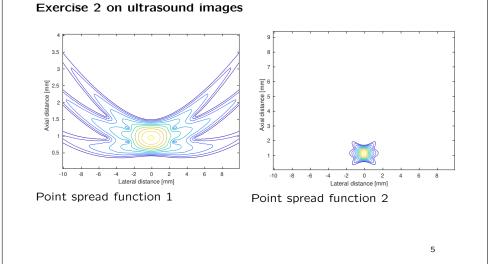
Topic of today: Velocity color flow imaging 1. Important concepts from last lecture 2. Exercise 2 on point spread functions 3. Assignment from last lecture 4. Velocity estimation using autocorrelation (a) Phase shift estimator (b) Stationary echo canceling 5. Velocity estimation using cross-correlation (a) Cross-correlation estimator (b) Stationary echo canceling (c) Implementation and artifacts 6. Exercise 3 on flow simulation Reading material: JAJ, ch. 7 and 8.



Exercise 2 on ultrasound images



2



Discussion on flow estimation system

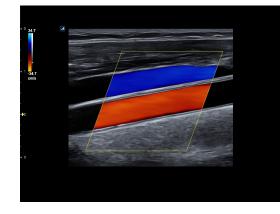
Calculate what you would get in a velocity estimation system for the phase shift and the power density spectrum for plug flow and parabolic flow.

Assume a peak velocity of 0.75 m/s at an angle of 45 degrees at the center of the vessel. The center frequency of the probe is 3 MHz, and the pulse repetition frequency is 10 kHz. The speed of sound is 1500 m/s.

- 1. How much is the phase shift between two ultrasound pulse emissions?
- 2. What would the spectrum of the received signal be, if the velocity profile is parabolic?
- 3. What would the spectrum of the received signal be, if plug flow was found in the vessel?

6

Color flow map



Blood supply to and from the brain (Carotid artery and jugular vein)

7

Color flow mapping using phase shift estimation

Received demodulated signal:

$$r_{cfm}(i) = a \cdot \exp(-j(2\pi \frac{2v_z}{c} f_0 i T_{prf} + \phi_f))$$

= $a \cdot \exp(-j\phi(t)) = x(i) + jy(i)$

Velocity estimation:

$$\frac{d\phi}{dt} = \frac{d\left(-2\pi\frac{2v_z}{c}f_0t + \phi\right)}{dt} = -2\pi\frac{2v_z}{c}f_0$$

Find the change is phase as a function of time gives quantity proportional to the velocity.

Realization

$$\tan(\Delta\phi) = \tan\left(\arctan\left(\frac{y(i+1)}{x(i+1)}\right) - \arctan\left(\frac{y(i)}{x(i)}\right)\right)$$
$$= \frac{\frac{y(i+1)}{x(i+1)} - \frac{y(i)}{x(i)}}{1 + \frac{y(i+1)}{x(i+1)} \cdot \frac{y(i)}{x(i)}}$$
$$= \frac{y(i+1)x(i) - x(i+1)y(i)}{x(i+1)x(i) + y(i+1)y(i)}$$

using that

$$\tan(A-B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}.$$

Then

$$\arctan\left(\frac{y(i+1)x(i) - x(i+1)y(i)}{x(i+1)x(i) + y(i+1)y(i)}\right) = -2\pi f_0 \frac{2v_z}{c} T_{prf}.$$

Color flow mapping using phase shift estimation

Using the complex autocorrelation:

$$\begin{aligned} R(m) &= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{i=-N}^{N} r_{cfm}^{*}(i) r_{cfm}(i+m) \\ &= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{i=-N}^{N} (x(i) - jy(i)) (x(i+m) + jy(i+m)) \\ &= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{i=-N}^{N} (x(i+m)x(i) + y(i+m)y(i)) + j(y(i+m)x(i) - x(i+m)y(i)) \end{aligned}$$

Actual determination from the complex autocorrelation (m = 1):

$$v_{z} = -\frac{cf_{prf}}{4\pi f_{0}} \arctan\left(\frac{\sum_{i=0}^{N_{c}-2} y(i+1)x(i) - x(i+1)y(i)}{\sum_{i=0}^{N_{c}-2} x(i+1)x(i) + y(i+1)y(i)}\right) = -\frac{cf_{prf}}{4\pi f_{0}} \arctan\left(\frac{\Im\{R(1)\}}{\Re\{R(1)\}}\right)$$
10

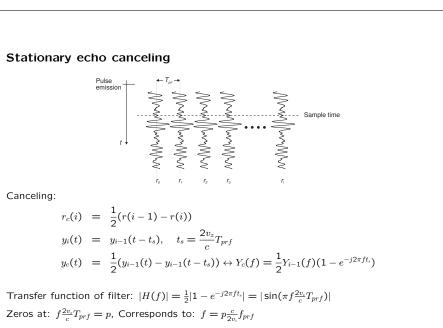
Phase shift estimation with RF sample averaging

Averaging of RF samples:

$$v_{z} = -\frac{cf_{prf}}{4\pi f_{0}} \arctan\left(\frac{\sum_{n=0}^{N_{s}-1} \sum_{i=0}^{N_{c}-2} y(n, i+1)x(n, i) - x(n, i+1)y(n, i)}{\sum_{n=0}^{N_{s}-1} \sum_{i=0}^{N_{c}-2} x(n, i+1)x(n, i) + y(n, i+1)y(n, i)}\right)$$

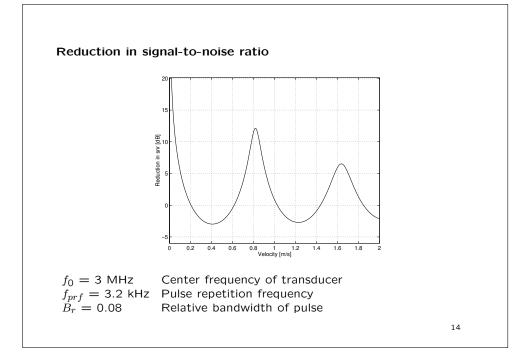
Taking samples over a pulse length can improve the estimate, assuming the velocity is roughly constant.

- x(n,i) RF sample for time index n and emission number i (in-phase component) y(n,i) Quadrature component
- Pulse repetition frequency
- f_{prf} f_0 Center frequency of transducer
- N_s Number of samples for one pulse length
- N_c Number of emissions
- cSpeed of sound



9





Reduction in signal-to-noise ratio due to filter $R_{\text{Snr}} = \frac{\text{Snr}}{\text{snr}_f} = \frac{\sqrt{\frac{E[\{p(t) * s_c(t)\}^2]}{E[n^2(t)]}}}{\frac{1}{\sqrt{2}}\sqrt{\frac{E[\{p(t) * h(t; t_s) * s_c(t)\}^2]}{E[n^2(t)]}}} = \sqrt{2}\sqrt{\frac{E[\{p(t) * s_c(t)\}^2]}{E[\{p(t) * h(t; t_s) * s_c(t)\}^2]}}.$ For subtraction canceler and Gaussian pulse: $R_{\rm Snr} = \sqrt{\frac{2\sqrt{2} + \exp(-\frac{2}{B_r^2})}{2\sqrt{2} + \exp(-\frac{2}{B_r^2})\xi_1 - 2\sqrt{2}\xi_2\cos(2\pi\frac{f_0}{f_{\rm tot}})}}$ $\xi_1 = 1 - \exp\left(-\frac{1}{2}\left(\frac{\pi B_r f_0}{f_{sh}}\right)^2\right) \qquad \xi_2 = \exp\left(-\left(\frac{\pi B_r f_0}{f_{sh}}\right)^2\right)$ $f_{sh} = \frac{c}{2w} f_{prf}$ p(t) Ultrasound pulse $S_c(t)$ Signal from else , $h(t;t_s)$ Impulse response of filter, $S_c(t)$ Signal from blood,

n(t) Measurement noise Relative bandwidth of Gaussian pulse f_0 Center frequency of pulse B_r

General case

Ratio is:

$$R_{\rm Snr} = \frac{{\rm Snr}}{{\rm snr}_f} = \frac{\sqrt{\frac{R_{yy}(0)}{R_{nn}(0)}}}{\sqrt{\frac{R_{xx}(0)}{R_{ff}(0)}}} = \sqrt{\frac{R_{yy}(0)}{R_{xx}(0)}} \frac{R_{ff}(0)}{R_{nn}(0)}$$

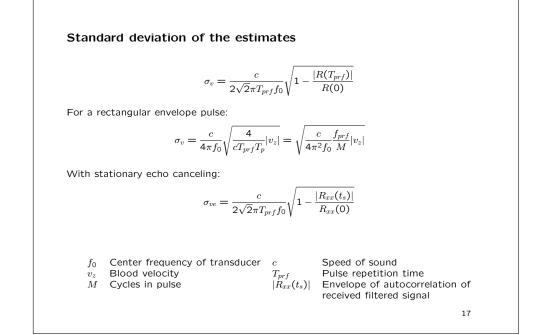
where

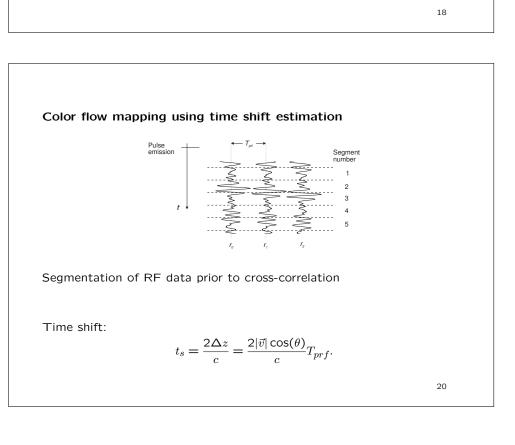
15

$$\begin{aligned} R_{nn}(0) &= E[n^2(t)] \\ R_{xx}(0) &= E[\{p(t) * h(t; t_s) * s_c(t)\}^2 \\ R_{ss}(\tau) &= \sigma_{ss}^2 \delta(\tau) \\ R_{xx}(\tau) &= \sigma_{ss}^2 \cdot R_{pp}(\tau) * R_{hh}(\tau) \\ R_{yy}(\tau) &= \sigma_{ss}^2 \cdot R_{pp}(\tau) \\ R_{ff}(\tau) &= R_{nn}(\tau) * R_{hh}(\tau) \end{aligned}$$

Autocorrelation of

$R_{ss}(\tau)$	blood scatterer signal	$R_{yy}(\tau)$	received signal
$R_{nn}(\tau)$	noise	$R_{xx}(\tau)$	filtered received signal
$R_{ff}(\tau)$	filtered noise	$R_{hh}(\tau)$	filter impulse response





Triplex image

GSHOSPITALET 210

GAIN

RES

RATE

3.8 cm

6 f/s

BC GAIN

RES

Triplex image of common carotid artery

82

136 Hz

36

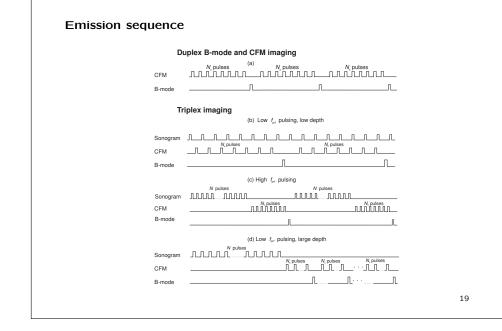
TRA 8545

3.5 kH

1.5 cm/

1 m

-100 cm/s



Cross-correlation estimator

The signals are related by:

$$r_{s2}(t_2) = r_{s1}(t_2 - T_{prf} - t_s) = r_{s1}(t_1 - t_s)$$

Cross-correlation yields

$$R_{12}(\tau) = \frac{1}{2T} \int_{T} r_{s1}(t) r_{s2}(t+\tau) dt = \frac{1}{2T} \int_{T} r_{s1}(t) r_{s1}(t-t_s+\tau) dt$$

= $R_{11}(\tau-t_s)$
 $R_{12}(\tau) = R_{pp}(\tau) * \sigma_s^2 \delta(\tau-t_s) = \sigma_s^2 R_{pp}(\tau-t_s)$

The velocity estimate is:

$$\hat{v}_z = \frac{c}{2} \frac{t_s}{T_{prf}}$$

21

Cross-correlation system



Calculation of the cross-correlation:

$$\hat{R}_{12d}(n, i_{seg}) = \frac{1}{N_s(N_c - 1)} \sum_{i=0}^{N_c - 2} \sum_{k=0}^{N_s - 1} r_{s_i}(k + i_{seg}N_s) r_{s_{i+1}}(k + i_{seg}N_s + n).$$

Largest detectable velocity:

$$v_{max} = \frac{l_g}{T_{prf}} = \frac{c}{2} N_s \frac{f_{prf}}{f_s}$$

22

Minimum velocity

Minimum velocity due to time quantization:

$$v_{min} = \frac{c}{2} \frac{f_{prj}}{f_s}$$

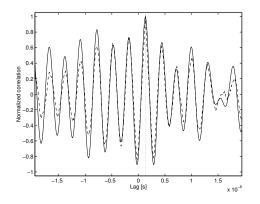
Interpolated peak by polynomial fit:

$$n_{int} = n_m - \frac{\hat{R}_{12d}(n_m + 1) - \hat{R}_{12d}(n_m - 1)}{2(\hat{R}_{12d}(n_m + 1) - 2\hat{R}_{12d}(n_m) + \hat{R}_{12d}(n_m - 1))}$$

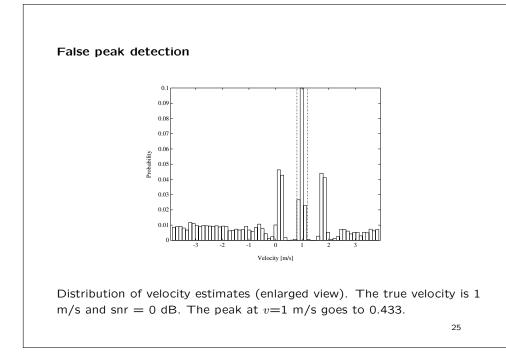
Interpolated estimate:

$$\hat{v}_{int} = \frac{c}{2} \frac{n_{int} f_{pr}}{f_s}$$

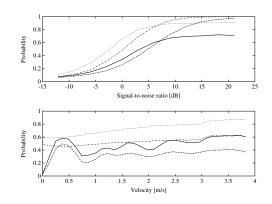
Cross-correlation function



Estimates of cross-correlation using full precision data values (—) Sign of the data (- - -).

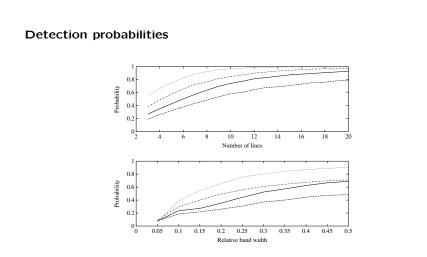


Detection probabilities



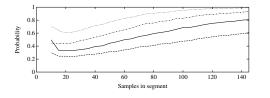
Variation in probability of correct detection due to different values of the parameters. — is when full precision data and echo canceling are used, - - - is the sign and echo canceling, \cdots is full precision data without echo canceling, and \cdot --- is sign data without echo canceling.

26

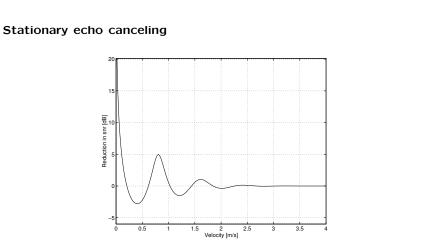


Variation in probability of correct detection due to different values of the parameters. — is when full precision data and echo canceling are used, - - - is the sign and echo canceling, \cdots is full precision data without echo canceling, and $\cdot-\cdot-$ is sign data without echo canceling.

Detection probabilities



Variation in probability of correct detection due to different values of the parameters. — is when full precision data and echo canceling are used, - - - is the sign and echo canceling, \cdots is full precision data without echo canceling, and $\cdot-\cdot-$ is sign data without echo canceling.

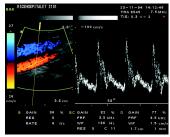


Reduction of the signal-to-noise ratio due to the stationary echo canceling filter as a function of velocity. A Gaussian 3 MHz pulse with a relative bandwidth of 0.2 was used. The pulse repetition frequency was 3.2 kHz.

29

Ultrasound systems for velocity imaging

- Two different color flow mapping systems:
 - Autocorrelation systems the velocity from the phase shift between emissions
 - Cross-correlation systems find the velocity from the time shift
- Stationary echo canceling has an influence on SNR
- Time shift system can find larger velocities, but also have a probability for error



- Next time: Simulations and non-linear imaging, chapters. 2.5-6 and 4.2, Pages 27-44 and 70-75
- Research on ultrasound imaging and velocity estimation
- Now: Assignment for next lecture, exercise 4

30

Discussion for next time on time and phase shift systems

Calculate what you would get in a time and phase shift velocity estimation systems for the parameters given below.

Assume a peak velocity of 0.6 m/s at an angle of 60 degrees at the center of the vessel. The center frequency of the probe is 3 MHz, and the pulse repetition frequency is 3.2 kHz. The speed of sound is 1500 m/s. A Gaussian pulse with a relative bandwidth of 0.2 is used for the cross-correlation system and $B_r = 0.08$ for the autocorrelation system.

- 1. How much is the time shift between two ultrasound pulse emissions?
- 2. What is the largest velocity detectable, if the cross-correlation function is calculated and searched over two wavelengths?
- 3. What is the highest detectable velocity for a phase shift system?
- 4. What is the loss in SNR for a velocity of 0.05 m/s based on Figures 7.5 and 8.3 for the two systems?

Exercise 3 about generating ultrasound RF flow data

Basic model, first emission:

$$r_1(t) = p(t) * s(t)$$

s(t) - Scatterer amplitudes (white, random, Gaussian)

Second emission:

$$r_2(t) = p(t) * s(t - t_s) = r_1(t - t_s)$$

Time shift t_s :

$$t_s = \frac{2v_z}{c} T_{prf}$$

 $r_1(t)$ Received voltage signal p(t) Ultrasound pulse * Convolution v_z Axial blood velocity

c Speed of sound

 v_z Axial blood velocity T_{prf} Time between pulse emissions

Signal processing

- 1. Find ultrasound pulse (load from file)
- 2. Make scatterers
- 3. Generate a number of received RF signals
- 4. Study the generated signals
- 5. Compare with simulated and measured RF data

33