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Topic of today: Ultrasound imaging with arrays and its modelling

1. Solution to exercise 1

2. Assignment from last time

3. Array imaging from last

4. Ultrasound fields and spatial impulse responses

5. Design of array geometries

6. Questions for exercise 1 and notes for exercise 2

Reading material: JAJ, ch. 2., p. 36-44

Self study: CW fields, Non-linear ultrasound will be explained in lecture 8
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Solution to Exercise 1
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Array geometry

• dx - Element pitch. For linear array:

≈ λ = c/f0, for phased array: ≈ λ/2

• w - Width of element

• ke = dx − w - Kerf (gap between ele-

ments)

• D = (Ne−1)dx+w - Size of transducer

• Commercial 7 MHz linear array:

– Elements: Ne = 192 ,

64 active at the same time

– λ = c/f0 = 1540/7 · 106 = 0.22 mm

– Pitch: dx = 0.208 mm

– Width: D = 3.9 cm

– Height: h = 4.5 mm

– Kerf: ke = 0.035 mm
4



Beamforming in Modern Scanners
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Array elements Delay lines Apodization coefficients

Adder

s(t) =
Nxdc∑

1

aiyi(t− τi)

τi =
|~rc − ~rf | − |~ri − ~rf |

c

• ai - Weighting coefficient (apodiza-

tion)

• yi(t) - Received signal

• ~r = [x, y, z]T - Spatial position

• ~ri - Position of transducer element,

• ~rc - Beam reference point

• ~rf - Focal point

• c - Speed of sound 5

Imaging methods
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PSF Characteristics
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• The PSF is three dimensional

• The B-mode images are only 2-D

• Displayed on a logarithmic scale

• Maximum taken along z

• Parameters used: FWHM, side-
and grating-lobe level
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Discussion assignment

What are the focusing delays on an array?

Parameters: 64 element array, λ pitch, all elements used in transmit

It is a 5 MHz array, so λ = 1500/5 · 106 = 0.30 mm

Focusing is performed directly down at the array center.

1. Imaging depth of 1 cm: How much should the center element be

delayed?

2. Imaging depth of 10 cm: How much should the center element be

delayed?
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How can we calculate the ultrasound fields?
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Linear Electrical System

Fully characterized by it’s impulse response
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Linear Acoustic System

Impulse response at a point in space - Spatial Impulse Responses - h(~r, t)
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Huygens’ Principle

Arrival times: t = d/c, summation of spherical waves

Moving the point results in a new impulse response:

Spatial Impulse Responses - h
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Rayleigh’s Integral

p(~r1, t) =
ρ0

2π

∫

S

∂vn(~r2, t− |~r1−~r2|
c )

∂t
| ~r1 − ~r2 |

d2~r2

= ρ0
∂vn(t)

∂t

∫

S

δ(t− | ~r1 − ~r2 |
c

)

2π | ~r1 − ~r2 |
d2~r2 (1)

Remeber that vn(t) ∗ δ(t− t0) = vn(t− t0)

| ~r1 − ~r2 | - Distance to field point
vn(~r2, t) - Normal velocity of transducer surface. Same vibration over

surface gives: vn(~r2, t) = vn(t)

Summation of spherical waves from each point on the aperture surface
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Spatial impulse response:

h(~r1, t) =
∫

S

δ(t− |~r1−~r2|
c )

2π | ~r1 − ~r2 |
dS

Emitted field:

p(~r1, t) = ρ0
∂v(t)

∂t
∗ h(~r1, t)

Pulse echo field:

vr(~r1, t) = vpe(t) ∗ hpe(~r1, t) = vpe(t) ∗ ht(~r1, t) ∗ hr(~r1, t)
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How do we calculate Spatial Impulse Responses?
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Acoustic Reciprocity

Kinsler & Frey:

”If in an unchanging environment the locations of a small source and a

small receiver are interchanged, the received signal will remain the same.”

In other words:

The field can be derived by emitting a spherical wave from the field point

and finding the arc that intersects the aperture.
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Situation
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Emission of spherical wave from the field point and its intersection of the
aperture.
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Projection onto Aperture Plane

Aperture

Field point

x

y

r1

r2

Intersection of spherical waves from the field point by the aperture, when

the field point is projected onto the plane of the aperture.

18

Calculation of Spatial Impulse Responses

Spatial impulse response:

h(~r1, t) =
∫

S

δ(t− |~r1−~r2|
c )

2π|~r1 − ~r2|
dS,

~r1 position of field point, ~r2 position on aperture.

Polar coordinate system gives
∫ ∫

s
f(x, y)dxdy =

∫ r
0

∫ 2π

0
rf(r, θ)dθdr.

Projected circles have radius: r =
√

(ct)2 − z2

Distance to field point: R =
√
z2 + r2, z - field point’s height above

x− y plane.

h(~r1, t) =
∫ r

0

∫ 2π

0
r
δ(t− |R|c )

2π|R| dθdr.
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Example:

Field point

x

y

Spherical
wave

θb

θc

r

First response arrives at t = t1 = z/c, hereafter the fixed part of the circle
between the angles θb and θc contributes to the response.

Response is:

hT (~r1, t) =
∫ r

0

∫ θc
θb
r
δ(t− |R|c )

2π|R| dθdr =
θc − θb

2π

∫ r
0
r
δ(t− |R|c )

|R| dr
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Spatial impulse response for example

Substitution for R is: R2 = (z2 + r2), dR/dr = d
√
z2+r2

dr = 1

2
√
z2+r2

2r =

r/R⇒ RdR = rdr. Substituting this gives:

hT (~r1, t) =
θc − θb

2π

∫ √z2+r2

z
R
δ(t− |R|c )

|R| dR =
θc − θb

2π

∫ √z2+r2

z
δ(t− |R|

c
)dR

Time substitution R/c = t′ results in (dt′/dR = 1/c, dR = cdt′)

hT (~r1, t) =
θc − θb

2π
c
∫ √z2+r2/c

z/c
δ(t− t′)dt′ = θc − θb

2π
c
∫ tx
t1
δ(t− t′)dt′

=
(θc − θb)

2π
c for t1 ≤ t ≤ tx.

Time tx equals the corresponding time for edge point closest to origo.
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Examples of Spatial Impulse Responses

x
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Aperture

Spherical waves

Emitted pressure field:

p(~r, t) = ρ0
∂vn(t)

∂t
∗ h(~r, t)

Computer simulation: sir demo.m
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Ultrasound fields

Emitted field:

p(~r1, t) = ρ0
∂v(t)

∂t
∗ h(~r1, t)

Pulse echo field:

vr(~r1, t) = vpe(t) ∗ fm(~r1) ∗ hpe(~r1, t)

= vpe(t) ∗ fm(~r1) ∗ ht(~r1, t) ∗ hr(~r1, t)

fm(~r1) =
∆ρ(~r1)

ρ0
− 2∆c(~r1)

c

Continuous wave fields:

F {p(~r1, t)} , F {vr(~r1, t)}

All fields can be derived from the spatial impulse response.
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Point spread functions
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Point spread function for concave, focused transducer

Top: simulation top

Bottom: tank measurement (6 dB contour lines)
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How do we determine the arrays geometry?
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Field for arrays

Linear medium, individual spatial impulse responses are summed:

ha(~rp, t) =
N−1∑

i=0

he(~ri, ~rp, t),

Assume elements are very small and field point is far away from the array:

ha(~rp, t) =
ka

Rp

N−1∑

i=0

δ(t− |~ri − ~rp|
c

)

Note, spherical wave.

Rp - Distance to transducer

k - Constant of proportionality
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Array geometry

θ

Array elements

D

r
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D sinθ /C

Geometry of linear array

If spacing between elements is D, then

ha(~rp, t) =
ka

Rp

N−1∑

i=0

δ

(
t− |~ra + iD~re − ~rp|

c

)

Difference in arrival time between ele-
ments far from the transducer is

∆t =
D sin Θ

c
.

Combined spatial impulse response is, thus, a series of Dirac pulses sep-

arated by ∆t.

ha(~rp, t) ≈
ka

Rp

N−1∑

i=0

δ

(
t− Rp

c
− i∆t

)
↔ Ha(f)

27

Usefull rules

Delay rule:

δ(t− iT0) ↔ exp(−j2πfiT0) = exp(−j2πfT0)i

Power series:

N−1∑

i=0

exp (−j2πfT0)i =
sin(πfT0N)

sin(πfT0)
exp

(
−j2πf(N − 1)

T0

2

)
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Beam pattern

Beam pattern as a function of angle for a particular frequency is found
by Fourier transforming ha

Ha(f) =
ka

Rp

N−1∑

i=0

exp
(
−j2πf

(
Rp

c
+ i

D sin Θ

c

))

= exp(−j2πRp
c

)
ka

Rp

N−1∑

i=0

exp
(
−j2πfD sin Θ

c

)i

=
sin(πfD sin Θ

c N)

sin(πfD sin Θ
c )

exp
(
−jπf(N − 1)

D sin Θ

c

)
ka

Rp
exp(−j2πRp

c
).

Amplitude of the beam profile:

|Ha(f)| =
∣∣∣∣∣∣
ka

Rp

sin(πND
λ sin Θ)

sin(πDλ sin Θ)

∣∣∣∣∣∣
.

Note correspondence to Fourier transform of digital square wave.
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Continuous wave field of point sources array

|Ha(f)| =
∣∣∣∣∣
ka

Rp

sin(πND
λ

sin Θ)

sin(πD
λ

sin Θ)

∣∣∣∣∣ =

∣∣∣∣∣A
sin(ND

2
k sin Θ)

sin(D
2
k sin Θ)

∣∣∣∣∣ , k = 2π/λ
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Beam pattern for 8 element array of point sources
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Beam pattern for 8 element array. 1.5 λ  element width and 2λ spacing

Main lobe

Grating lobe

Angular beam pattern for one element

Grating lobes for array with 8 point elements (top) and of 8 elements with a size of
1.5λ (bottom). The pitch is 2λ.
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Interpretation and consequences

Beam profile:

|Ha(f)| =
∣∣∣∣∣∣
ka

Rp

sin(πND
λ sin Θ)

sin(πDλ sin Θ)

∣∣∣∣∣∣

D - Pitch of transducer.

N - Number of elements.

ND - Width of array.

Main lobe at Θ = 0 or n = 0. Width from
zeros at:

N
D sin Θ

λ
= 1⇒ Θw = 2 arcsin

λ

ND

Other peaks should be avoided.

Poles in transfer function:

D sin Θ

λ
= n

n - Integer 6= 0.

Corresponds to peaks in the beam pattern.

Demand for no grating lobe:

D sin Θ

λ
< 1⇒ D <

λ

sin Θ

For linear array: D < λ.

For phased array: D < λ/2 for safety margin for beam steering.
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Note on fields

More information about ultrasound fields and their simulation can be

found in:

Jørgen Arendt Jensen: Linear description of ultrasound imaging sys-

tems, Notes for the International Summer School on Advanced Ultrasound

Imaging Technical University of Denmark June 1 to June 5, 2015.

Can be found on the web-site under Notes.

The Web-site for simulation can be found at:

http://field-ii.dk/
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Discussion for next time

Design an array for cardiac imaging

Penetration depth 15 cm and 300 λ

Assume distance between ribs is maximum 3 cm

The elevation focus should be at 8 cm

1. What is the element pitch?

2. What is the maximum number of elements in the array?

3. What is the lateral resolution at 7 cm?

4. What is the F-number for the elevation focus?
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Exercise 2 in generating ultrasound images

Basic model:

r(z, x) = p(z, x) ∗ ∗s(z, x)

r(z, x) - Received voltage signal (time converted to depth using the speed

of sound)

p(z, x) - 2D pulsed ultrasound field

∗∗ - 2D convolution

s(z, x) - Scatterer amplitudes (white, random)

z - Depth, x - Lateral distance
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Signal processing

1. Find 2D ultrasound field (load from file)

2. Make scatterers with cyst hole

3. Make 2D convolution

4. Find compressed envelope data

5. Display the image

6. Compare with another pulsed field
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Hint

Hint to make the scatterer map:

% Make the scattere image

Nz=round(40/1000/dz);

Nx=round(40/1000/dx);

R=5/1000;

e=randn (Nz, Nx);

x=ones(Nz,1)*(-Nx/2:Nx/2-1)*dx;

z=(-Nz/2:Nz/2-1)’*ones(1,Nx)*dz;

outside = sqrt(z.^2 + x.^2) > R;

e=e.*outside;
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Learned today

• Calculation of fields using spatial impulse response

• Influence of physical array dimensions on fields

• Remember to design the array for next time

• Prepare your code for Exercise 2

Next time: Blood flow, ch. 3 in JAJ, pages 45-61.
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