
31545 Medical Imaging systems

Lecture 5: Blood flow in the human body

Jørgen Arendt Jensen

Department of Health Technology

Section for Ultrasound and Biomechanics

Technical University of Denmark

September 12, 2022

1

Topic of today: Blood flow

1. Exercise 1 solution

2. Design of cardiac array

3. Basic observations about flow in the human body

• Conservation of mass

• Conservation of energy

• Viscosity

• Turbulence

4. Pulsating flow and its modeling

5. Pulse propagation and influence of geometric changes in vessels

6. Questions on Exercise 2

Reading material: JAJ, ch. 3, pages 45-61
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Signal processing in ultrasound system - Exercise 1

Resulting image

Exercise 1: Liver vessel image 
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Ultrasound image of portal veins in the liver.
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Useful Matlab commands

Loading of files:

cmd=[’load in_vivo_data/8820e_B_mode_invivo_frame_no_’,num2str(j)]

eval(cmd)

Making a movie:

for j=1:66

image(randn(20))
colormap(gray(256))
axis image

F(j)=getframe;
end

% Play the movie 5 times at 22 fr/s

movie(F,5, 22)

Final video in: /home/jaje/undervisning/k 22485 31545 billeder/exercises/

exercise1/solution/for 2022 32 bits/in vivo liver video.mp4
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Design an array for cardiac imaging

Penetration depth 15 cm and 300 λ

Assume distance between ribs is maximum 3 cm

The elevation focus should be at 8 cm

1. What is the element pitch?

2. What is the maximum number of elements in the array?

3. What is the lateral resolution at 7 cm?

4. What is the F-number for the elevation focus?
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What are the basic properties of the blood flow

in the human body?
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Human circulatory system

Pulmonary circulation

through the lungs

Systemic circulation to the

organs

Type Diameter [cm]
Arteries 0.2 – 2.4
Arteriole 0.001 – 0.008
Capillaries 0.0004 – 0.0008
Veins 0.6 – 1.5
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Arteries and veins in the body
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Physical dimensions of arteries and veins

Internal Wall Young’s
diameter thickness Length modulus

Vessel cm cm cm N/m2 · 105

Ascending aorta 1.0 – 2.4 0.05 – 0.08 5 3 – 6
Descending aorta 0.8 – 1.8 0.05 – 0.08 20 3 – 6
Abdominal aorta 0.5 – 1.2 0.04 – 0.06 15 9 – 11
Femoral artery 0.2 – 0.8 0.02 – 0.06 10 9 – 12
Carotid artery 0.2 – 0.8 0.02 – 0.04 10 –20 7 – 11
Arteriole 0.001 – 0.008 0.002 0.1 – 0.2
Capillary 0.0004 – 0.0008 0.0001 0.02 – 0.1
Inferior vena cava 0.6 – 1.5 0.01 – 0.02 20 – 40 0.4 – 1.0

Data taken from Caro et al. (1974)
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Velocity parameters in arteries and veins

Peak Mean Reynolds Pulse propaga-
velocity velocity number tion velocity

Vessel cm/s cm/s (peak) cm/s
Ascending aorta 20 – 290 10 – 40 4500 400 – 600
Descending aorta 25 – 250 10 – 40 3400 400 – 600
Abdominal aorta 50 – 60 8 – 20 1250 700 – 600
Femoral artery 100 – 120 10 – 15 1000 800 – 1030
Carotid artery 50 – 150 20 – 30 600 – 1100
Arteriole 0.5 – 1.0 0.09
Capillary 0.02 – 0.17 0.001
Inferior vena cava 15 – 40 700 100 – 700

Data taken from Caro et al. (1974)

Reynolds number:

Re =
2Rρ

µ
v̄

Indicates turbulence if Re > 2500 (approximately).

R - Vessel radius, ρ - Density of blood, µ - Viscosity, v̄ - Mean cross-sectional velocity
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Characteristics of blood flow in humans

• Pulsating flow, repetition from 1 to 3 beats/sec

• Not necessarily laminar flow

• Short entrance lengths

• Branching

• Reynolds numbers usually below 2500, non-turbulent flow

• Very complicated flow patterns

• We will start from simple observations and then develop the theory
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Stationary flow properties

Laminar flow. Particles flow in par-

allel layers with streamlines that do

not intersect.

No acceleration at a fixed position:

∂v

∂t

∣∣∣∣
x,y,z

= 0

Note, however, that it is possible that ∇v 6= 0 at changes in geometry
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Conservation of mass

Height h1

Pressure  p1

Area A1

Velocity v1

Height h2

Pressure  p2

Area A2

Velocity v2

Mass at both ends must be

equal:

A1v1ρ1∆t = A2v2ρ2∆t,

Incompressible fluid: ρ1 = ρ2:

v2 =
A1

A2
v1

A2 > A1: Velocity decreases

A2 < A1: Velocity increases

Methods for generating a flow:

• Difference in pressure

• Difference in height
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Benoulli’s law for conservation of energy

p1 +
v2

1
2 ρ1 + gh1ρ1 + U ′1 = p2 +

v2
2

2 ρ2 + gh2ρ2 + U ′2
↑ ↑ ↑ ↑

pressure kinetic potential Internal (heat, chemical, friction)

Assume same height h1 = h2, incompressible fluid ρ1 = ρ2 = ρ, and same

internal energy gives

p1 − p2 =
ρ

2
(v2

2 − v2
1)
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Relations for a pressure difference

Height h1

Pressure  p1

Area A1

Velocity v1

Height h2

Pressure  p2

Area A2

Velocity v2

Equations:

p1 − p2 =
ρ

2
(v2

2 − v2
1)

v2 =
A1

A2
v1

Combining gives:

p2 = p1 −
ρ

2

((
A1

A2

)2

v2
1 − v2

1

)

= p1 +
ρ

2

(
1−

(
A1

A2

)2
)
v2

1

Examples:

A2 < A1 ⇒ p2 < p1 and v2 > v1

A2 > A1 ⇒ p2 > p1 and v2 < v1

(Incompressible fluid and same height)
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Viscosity

d

v = 0

v

F

Fluid

Area A

Shear stress:

F

A
= µ

v0

d
µ - Viscosity of fluid

For small fluid element:

∆F

∆A

v+∆v

v

∆y

x, v

y, u

Shear stress:

∆F

∆A
= µ

∆v

∆y

In the limit:

Sxy = µ

(
∂vx

∂x
+
∂vy

∂y

)

for a Newtonian fluid.
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Viscosity properties

• Newtonian fluids have a linear relation between shear stress and v/d.

• For non-Newtonian fluids µ is dependent on shear stress Sxy.

• Unit of viscosity is kg/[m s] or centipoise cP (g/[cm s])

• Value for water is 1 cP.

• Blood is a Newtonian fluid in major vessels

• The viscosity in blood depends on hematocrit (fraction of red blood cell volume),
temperature, and pressure.

• In major vessel the viscosity is usually around 4 cP at 37o and a hematocrit of 45%.

• Viscosity will give rise to parabolic velocity profiles for a laminar, stationary flow.
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Flow models: Stationary parabolic flow

r

vo

v(r)
R • Stationary flow: no pul-

sation

• Laminar flow

• Long entrance length

Profile:

v(r) =

(
1− r2

R2

)
v0,

Spatial mean velocity over cross section:

v̄ =
v0

2
v0 - Peak velocity at center of vessel, r - Radial position in vessel,
R - Radius of vessel
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Poiseuille flow

r

vo

v(r)
R

Pressure difference for a laminar,

parabolic flow:

∆p = RfQ

Rf - Viscose resistance

Q - Volume flow velocity

Q = Av̄ =
∫ ∫

xy
v(x, y)dxdy [m3/s]

Rf =
8µl

πR4

l - Distance for pressure drop

R - Radius of vessel
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Example

Straight vessel with a diameter of 2 cm, µ = 4 cP rises 20 cm straight up. Mean velocity
is 30 cm/s and density is 1060 kg/m3.

Pressure difference between the ends of the tube?

Neglect viscosity, the pressure difference is then given by Bernoulli’s equation

∆P =
ρ

2
(v2

2 − v2
1) + ρg(h2 − h1).

Straight vessel gives v1 = v2:

∆P = ρg(h2 − h1) = 1060 · 9.82 · 0.2 = 2082 Pa.

Pressure drop due to viscosity is

∆P = RfQ =
8µl

πR4
v̄πR2 =

8µl

R2
v̄ =

8 · 0.004 · 0.2
0.012

0.3 = 19.2 Pa.

For a vessel with a diameter of 0.2 cm and a mean velocity of 10 cm/s, the pressure
drop due to viscosity is

∆P =
8 · 0.004 · 0.2

0.0012
0.1 = 640 Pa.

There is, thus, a considerable difference in the pressure relationships between a standing
person and a person lying flat on a bed.

20



Giraffe assignment

What is the change in

pressure in a Giraffe’s

neck, when it moves

it’s head from drink-

ing to eating leaves in

a tree?

The height of a giraffe

is up to 6 m.
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Why doesn’t the Giraffe explode?

Image courtesy of Hans Nygaard, Aarhus University.
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Turbulent flow in tubes

Photo of dye injected into a tube

with flowing water. The images are

taken of the original apparatus as

used by Reynold in 1883.

Velocity is increasing from the top

tube to the bottom one.

Courtesy of C. Lowe, Manchester School of Engineering.
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Turbulent flow in tubes

Determined by Reynolds number:

Re =
2Rρ

µ
v̄

Laminar flow usually found if:

Re < 2000

Turbulent flow found if :

Re > 2500

Usually non-turbulent flow is found

in most vessels
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Disturbed flow in the body

Normally non-turbulent flow exists in the body, but it can appear at constrictions,
directional changes, and bifurcations:
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Display of velocity direction and magnitude in the carotid bifurcation right after peak
systole for a normal volunteer (Courtesy of Jesper Udesen).
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Entrance effects

Development of a steady-state parabolic velocity profile at the entrance to a tube.

Entrance length:

Ze ≈
RRe

15

Example (aorta):

Ze ≈
0.01 · 1600

15
≈ 1m
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Theoretical velocity profiles
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Velocity profiles for different values of p0.

The spatial mean velocity is the same for all profiles.

Profiles:

v(r) =
(

1−
(
r

R

)p0
)
v0

Spatial mean velocity

over cross section:

v̄ = v0

(
1− 2

p0 + 2

)

v0 - Peak velocity at center of
vessel
r - Radial position in vessel
R - Radius of vessel

27

Velocity profiles for femoral and carotid artery
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Profiles for the carotid artery

Profiles at time zero are shown at the bottom of the figure and time is increased toward
the top. One whole cardiac cycle is covered and the dotted lines indicate zero velocity.
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Modeling pulsatile flow: I

Periodic waveform:

Fourier decomposition of spatial average ve-
locity:

Vm =
1

T

∫ T

0
v̄(t) exp(−jmωt)dt.

The spatial average velocity is then:

v̄(t) = v0 +
∞∑

m=1

|Vm| cos(mωt− φm)

φm = 6 Vm.
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Spatial mean velocities from the common
femoral (top) and carotid arteries

(bottom).
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Modeling pulsatile flow: II

Newtonian fluid makes it possible to add
Fourier components

Sinusoidal pressure difference:

p(t) = ∆p cos(ωt− φ)

Volume flow using Womersley’s formula:

Q(t) =
8

Rf

M ′10

α2
∆P sin(ωt− φ+ ε′10)

α = R

√
ρ

µ
ω - Womersley’s number

Rf =
8µL

πR4

α < 1: Pressure and flow rate in phase
α > 1: Pressure and flow rate out-of phase
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as a function of α.
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Modeling pulsatile flow: III

Find spatial and temporal distribution from Womersley-Evans theory:

v(t, r/R) = 2v0

(
1−

( r
R

)2
)

+
∞∑

m=1

|Vm||ψm(r/R, τm)| cos(mωt− φm + χm(r/R, τm))

vm(t, r/R) = |Vm||ψm(r/R, τm)| cos(ωmt− φm + χm)

ψm(r/R, τm) =
τmJ0(τm)− τmJ0( rRτm)

τmJ0(τm)− 2J1(τm)
χm(r/R, τm) = 6 ψ(r/R, τm)

τm = j3/2R

√
ρ

µ
ωm,

R - Vessel radius, r - Radial position in vessel, ρ - Density of blood,

µ - Viscosity, m - Harmonic number
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Fourier components for flow velocity

Common femoral Common carotid
Diameter = 8.4 mm Diameter = 6.0 mm
Heart rate = 62 bpm Heart rate = 62 bpm
Viscosity = 0.004 kg/[m·s] Viscosity = 0.004 kg/[m·s]

m f α |Vm|/v0 φm m f α |Vm|/v0 φm
0 - - 1.00 - 0 - - 1.00 -
1 1.03 5.5 1.89 32 1 1.03 3.9 0.33 74
2 2.05 7.7 2.49 85 2 2.05 5.5 0.24 79
3 3.08 9.5 1.28 156 3 3.08 6.8 0.24 121
4 4.10 10.9 0.32 193 4 4.10 7.8 0.12 146
5 5.13 12.2 0.27 133 5 5.13 8.7 0.11 147
6 6.15 13.4 0.32 155 6 6.15 9.6 0.13 179
7 7.18 14.5 0.28 195 7 7.18 10.3 0.06 233
8 8.21 15.5 0.01 310 8 8.21 12.4 0.04 218

Data from Evans et al (1989)

Computer simulation: flow demo.m
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Pulse propagation velocity

How fast a pressure disturbance travels in a vessel

Moens–Korteweg equation:

cp =

√
Eh

2ρR
,

Assumes thin wall.

A more precise equation by Nichols and O’Rourke (1990):

cp =

√
Eh

2ρR
(1− σ2),

σ = 0.5 decreases propagation velocity by
√

3/4.

Normally the propagation velocity is 5 to 10 m/s.

h - wall thickness, ρ - density of the wall, R - vessel radius
E - Young’s modulus for elasticity of vessel wall
σ - ratio of transverse to longitudinal strain called Poisson ratio (often assumed 0.5)
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Velocity parameters in arteries and veins

Peak Mean Reynolds Pulse propaga-
velocity velocity number tion velocity

Vessel cm/s cm/s (peak) cm/s
Ascending aorta 20 – 290 10 – 40 4500 400 – 600
Descending aorta 25 – 250 10 – 40 3400 400 – 600
Abdominal aorta 50 – 60 8 – 20 1250 700 – 600
Femoral artery 100 – 120 10 – 15 1000 800 – 1030
Carotid artery 50 – 150 20 – 30 600 – 1100
Arteriole 0.5 – 1.0 0.09
Capillary 0.02 – 0.17 0.001
Inferior vena cava 15 – 40 700 100 – 700

Data taken from Caro et al. (1974)
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Vessel branching
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• Cross-sectional area of arterial

tree is gradually increased

• The ratio between the total ar-

eas of the branching vessels in

the human body is on the order

of 1.26

• Increase in pressure gradient for

the bifurcation is on the order of

2/1.262 = 1.26.

• Decrease in velocity is by a factor

of 1.26, thus v2 = 0.8v0.
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Influence of geometric changes

• Curving of vessel change the pro-

file.

• A parabolic profile will be skewed

out from the center of the vessel

due to centrifugal forces.

• Results in a profile with larger

velocities closer to the center of

curvature than at the far wall.

• Vessels gradually narrow and

Reynold’s number is successively

decreased and the flow is stabi-

lized.
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Properties of blood flow in the human body

• Spatially variant

• Time variant (pulsating flow)

• Different geometric dimensions

• Vessels curves and branches re-

peatedly

• Can at times be turbulent

• Flow in all directions

• A velocity estimation system

should be able to measure with a

high resolution in time and space

• The topic for the next lectures:

Chapter 4 and 6, Pages 63-79

and 113-129
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Discussion for next time

You should determine the demands on a blood velocity estimation system

based on the temporal and spatial velocity span in the human body for

the carotid and femoral artery.

Base your assessment on slide 29 and the flow demo.

1. What are the largest positive and negative velocities in the vessels?

2. Assume we can accept a 10% variation in velocity for one measure-

ment. What is the longest time for obtaining one estimate?

3. What must the spatial resolution be to have 10 independent velocity

estimates across the vessel?
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Exercise 2 in generating ultrasound images

Basic model:

r(z, x) = p(z, x) ∗ ∗s(z, x)

r(z, x) - Received voltage signal (time converted to depth using the speed

of sound)

p(z, x) - 2D pulsed ultrasound field

∗∗ - 2D convolution

s(z, x) - Scatterer amplitudes (white, random)

z - Depth, x - Lateral distance
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Signal processing

1. Find 2D ultrasound field (load from file)

2. Make scatterers with cyst hole

3. Make 2D convolution

4. Find compressed envelope data

5. Display the image

6. Compare with another pulsed field
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Hint

Hint to make the scatterer map:

% Make the scattere image

Nz=round(40/1000/dz);

Nx=round(40/1000/dx);

R=5/1000;

e=randn (Nz, Nx);

x=ones(Nz,1)*(-Nx/2:Nx/2-1)*dx;

z=(-Nz/2:Nz/2-1)’*ones(1,Nx)*dz;

outside = sqrt(z.^2 + x.^2) > R;

e=e.*outside;
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