

Teacher for the MR part

- Hans Magnus Henrik Lundell
- DTU Health Technology
- Build 349, first floor
- E-mail: hmag@dtu.dk

• Was Esben Thade Petersen which unfortunately passed away last week

Guest lecturers

- Chief physicist, Cand.scient Søren Holm, Klinisk fysiologisk og nuklearmedicinsk klinik Rigshospitalet
- Professor, dr.med. Liselotte Højgaard, Klinisk fysiologisk og nuklearmedicinsk klinik Rigshospitalet
- Senior researcher, PhD Jakob Sauer Jørgensen, DTU Compute
- Senior Research Officer Carsten Gundlach, Department of Physics, DTU
- PhD, MD Thomas Kristensen, Diagnostisk Center, Radiologisk klinik afsnit 2023, Rigshospitalet
- Associate professor, PhD Borislav Tomov, DTU Health Technology
- PhD student, MD Nathalie Panduro, Rigshospitalet, Radiologisk Afdeling

5

7

6

DTU

Prerequisites for following the course

- · Assumes that the curriculum in Medicine & Technology has been followed:
 - 22052/31610 Applied signal processing
 - 22481/31540 Introduction to medical imaging
 - Courses in human anatomy and physiology
 - Capable of programming in Matlab
 - Interest in Medical Imaging!

DTU

Ħ

9

DTU Ħ

10

plan

web site

12

- Discussion of reading material each Monday (13-15) in aud. 205, build. 349 and Thursday (9-11)
 - Discussion of Chapter and Cold-call
 - Discussion assignment of the day
 - Questions
 - Slides to support discussion
 - Small assignments
 - Matlab demonstration
- Exercises some Mondays (15-17) in E-data bar build. 341 room 015 (check plan)
- Two final assignments with hand-in of reports. Oral exam about the reports, exercises, and reading material (everything counts!)
 - 11/x

DTU

Final assignments

- Two assignments are made:
 - 1. Ultrasound signal processing (hand in 23/10)
- 2. Reconstruction and artefacts (hand in 30/11)
- Made in groups of two
- Evaluated with a grade that counts towards the final grade ٠
- Hand-in time is strict •
- Hand in as pdf and Urkund is used for plagiarism check

Quiz on signal processing next time

Topics:

22

- · What is the spectrum of a square wave?
- Basic rules for signals and correlation functions
- · What is the spectrum of a sinusoidal pulse with M oscillations
 - · Sketch the signal
 - · Sketch the spectrum
- What is the autocorrelation of a white, random signal?
- How do you plot in Matlab
- Takes 15 min and we will discuss it next time Monday

21

DTU

DTU

Medical Ultrasound: History and Systems

23

DTU ₩

Digital Signal

es, Algorithms, and Application

Processing

Ultrasound history

- Used for many years by animals bats and dolphins
- Piezoelectric effect discovered by the Curie brothers in 1888
- High frequency pressure waves in water (SONAR) was developed after World War I to detect submarines.
- The first ultrasound systems for medical imaging was made in the 1950s, mainly by Howry and Wild.
- The first velocity estimation system by Satomura in Japan, 1957

• Received and demodulated frequency is in the audio range:

-Emitted frequency: 3-10 MHz

-Blood velocity: 0-1 m/s

-Resulting frequency example:

• Matlab example (snd_demo)

$$f_{doppler} = \frac{2v_z}{c} f_0 = \frac{2 \cdot 0.75}{1540} 5 \cdot 10^6 = 5 \text{ kHz}$$

33

34

DTU

Table with characteristic acoustic impedances

DTU

		Speed of	Characteristic
Medium	Density	sound	acoustic impedance
	kg/m ³	m/s	kg/[m ² ⋅s]
Air	1.2	333	0.4×10^{3}
Blood	1.06×10^{3}	1566	1.66×10^{6}
Bone	$1.38 - 1.81 \times 10^{3}$	2070 - 5350	$3.75 - 7.38 \times 10^{6}$
Brain	1.03×10^{3}	1505 - 1612	$1.55 - 1.66 \times 10^{6}$
Fat	0.92×10^{3}	1446	1.33×10^{6}
Kidney	1.04×10^{3}	1567	1.62×10^{6}
Lung	0.40×10^3	650	0.26×10^{6}
Liver	1.06×10^3	1566	1.66×10^{6}
Muscle	1.07×10^3	1542 - 1626	$1.65 - 1.74 \times 10^{6}$
Spleen	1.06×10^{3}	1566	1.66×10^{6}
Distilled water	1.00×10^{3}	1480	1.48×10^{6}

