

Suppose the province of the province

Practical details – Teachers for exercises

PostDoc Lasse Thurmann Jørgensen

DTU

₩

- DTU Health Technology
- Build 349, room 208
- E-mail: <u>latjo@dtu.dk</u>

The purpose of the course is ...

- to obtain a thorough understanding of diagnostic imaging systems
- to give an understanding of the relation between different medical imaging systems and other measurement systems
- to relate the physical measurement situation with the applied signal processing
- to give an understanding for "good" (robust/accurate/sensitive) measurement and processing methods
- to give an active knowledge of the signal and image processing in modern imaging systems through exercises and project assignments.

Teaching paradigm

DTU

- Discussion of reading material each Monday (13-15) in aud. 205, build. 349 and Thursday (9-11)
 - Discussion of Chapter and Cold-call
 - Discussion assignment of the day
 - Questions
 - Slides to support discussion
 - Small assignments
 - Matlab demonstration
- Exercises some Mondays (15-17) in E-data bar build. 341 room 015 (check plan)
- Two final assignments with hand-in of reports. Oral exam about the reports, exercises, and reading material (everything counts!)

11/x

11

Web-site and course plan

- Web-site at: <u>courses.healthtech.dtu.dk/22485/</u>
- Course plan in 4 themes:
 - Ultrasound imaging
 - X-ray and computer tomography (CT)
 - Radio isotopic imaging (PET, PET/CT, SPECT)
 - Magnetic resonance (MR)
- Slides are posted roughly 1 hour or less before the lecture
- All data and exercises can be found on the web site

Final assignments

- Two assignments are made:
 - 1. Ultrasound signal processing (hand in 23/10)
 - 2. Reconstruction and artefacts (hand in 30/11)
- Made in groups of two
- Evaluated with a grade that counts towards the final grade
- Hand-in time is strict
- Hand in as pdf and Urkund is used for plagiarism check

Quiz on signal processing next time

Topics:

- What is the spectrum of a square wave?
- Basic rules for signals and correlation functions
- What is the spectrum of a sinusoidal pulse with M oscillations
 - Sketch the signal
 - Sketch the spectrum
- What is the autocorrelation of a white, random signal?
- How do you plot in Matlab
- Takes 15 min and we will discuss it next time Monday

Medical Ultrasound: History and Systems

Reflection • Reflection of sound: $R_{a} = \frac{z_{2} \cos \Theta_{i} - z_{1} \cos \Theta_{i}}{z_{2} \cos \Theta_{i} + z_{1} \cos \Theta_{i}} = \frac{p_{i}}{p_{i}}$ • Characteristic acoustic impedance: $z = \rho c$ • Snell's law: $\frac{c_{1}}{c_{2}} = \frac{\sin \Theta_{i}}{\sin \Theta_{i}}$ • Transmission of sound: $T_{a} = \frac{2z_{2} \cos \Theta_{i}}{z_{2} \cos \Theta_{i} + z_{1} \cos \Theta_{i}} = \frac{p_{i}}{p_{i}}$ Hindident wave Medium 1 Medium 2 Transmitted wave θ_{t}

Table with characteristic acoustic impedances

		Speed of	Characteristic
Medium	Density	sound	acoustic impedance
	kg/m ³	m/s	kg/[m ² ⋅s]
Air	1.2	333	0.4×10^{3}
Blood	1.06×10^{3}	1566	1.66×10^{6}
Bone	$1.38 - 1.81 \times 10^3$	2070 - 5350	$3.75 - 7.38 \times 10^{6}$
Brain	1.03×10^{3}	1505 - 1612	$1.55 - 1.66 \times 10^{6}$
Fat	0.92×10^{3}	1446	1.33×10^{6}
Kidney	1.04×10^{3}	1567	1.62×10^{6}
Lung	0.40×10^{3}	650	0.26×10^{6}
Liver	1.06×10^{3}	1566	1.66×10^{6}
Muscle	1.07×10^{3}	1542 - 1626	$1.65 - 1.74 \times 10^{6}$
Spleen	1.06×10^{3}	1566	1.66×10^{6}
Distilled water	1.00×10^3	1480	1.48×10^{6}

Signal processing in a B-mode system (Exercise 1)

1 cm between markers (15 x 15 cm)

> This is exercise 1 Monday September 11

57

Discussion assignment for Thursday

- Design an ultrasound B-mode system
- Assume that a system can penetrate 300 wavelengths
- It should penetrate down to 10 cm in a liver
 - What is the largest pulse repetition frequency possible?
 - What is the highest possible transducer center frequency?
 - What is the axial resolution?
 - What is the lateral resolution for an F-number of 2?

DTU

Summary of today

- Practical details of course
- History of ultrasound
- Basic ultrasound
- Content of exercise 1
- For next time
 - Download and print book from DTU Learn
 - Read chapter 1 and 2, page 1-24 and look at your signal processing books – remember quiz questions
 - Make the discussion assignment
 - We will discuss Chapter 2
 - What are the key parameters of ultrasound?
 - Ultrasound propagation, intensity, reflection, and scattering
 - Next discussion Thursday, 9-12 on these topics
 - Read and prepare questions and discussion for exercise 1
 - Prepare for signal processing quiz

