

Y.S.										
RH	magnified									
			Ne 16	Ne 17 109 ms	Ne 18 1,67 s	Ne 19 17,22 s	Ne 20 90,51	1		
			р Е 15	β ⁺ 8.0; 13,5 βρ 4.59; 3,77; 5,12 F 16	β* 3,4.= γ1042 F 17	β ⁺ 2,2 γ(1357) F 18	σ 0.037 F 19	σ0		
		•		p	64,8 s β ⁺ 1,7 no γ	109,7 m β* 0,6 no γ	100 o 0,0095	5		
	0 12	O 13 8,9 ms	O 14 70,59 s	O 15 2,03 m	O 16 99,762	O 17 0,038	O 18 0,200			
		β ⁺ 16,7 βp 1,44; 6,44; 0,93	β* 1,8;4,1 γ 2313	β ⁺ 1,7 no γ	a 0,000178	σ _{n,1} 0.235	a 0,00016	15 Y		
		N 12 11,0 ms	N 13 9,96 m	N 14 99,63	N 15 0,37	N 16 5,3 µs 7,13 s	N 17 4,17 s			
		β ⁺ 16,4 γ 4439 βα 0,2	β* 1,2 10 γ	σ 0,075 σ _{n, p} 1,81 .	o 0,000024	17,120 17,120 17,125 17,15 17,15 17,15 17,15	p=3.2,8,7 fin 1,17,0,38 y 871; 2184	10 × 10		
	C 10 19,3 s	C 11 20,38 m	C 12 98,90	C 13 1,10	C 14 5730 a	C 15 2,45 s	C 16 0,747 s			
\$2018	1,9 718: 1022	β* 1,0 no γ	o 0,0034	a 0,0009	рт 0.2 по у	β ⁺ 4,5; 9,8 γ 5298	β ⁺ βn.0,79; 1,72	12		

Isotope	Half-Life	Production
Carbon-11	20.5 min	¹⁴ N(p,α) ¹¹ C
Nitrogen-13	10.0 min	¹⁶ Ο (p,α) ¹³ N
Oxygen-15	2.1 min	¹⁴ N(d,n) ¹⁵ O
Fluorine-18	110 min	¹⁸ O(p,n) ¹⁸ F (F ⁻), ²⁰ Ne(d,α) ¹⁸ F (F ₂
Gallium-68	68 min	Daughter of Ge-68 (271days)
Rubidium-82	1.3 min	Daughter of Sr-82 (25days)

Nuclear Reactions									
¹⁸ Ο (p,n) ¹⁸ F ¹⁴ N (d,n) ¹⁵ O ¹⁴ N (p,α) ¹¹ C ¹⁶ Ο (p,q) ¹³ N	¹⁵ O	¹⁷ F 64.49s β ⁺	¹⁸ F 109.77m 96.9 % 8 ⁺ ¹⁷ O	¹⁹ F 20.3 ms ¹⁸ O					
¹³ N	122.24s 99.9 % β+	99.762	0.038	6.200					
9.96 m β ⁺	99.64	0.36							
20.3 m 98.89 99.8 % β+	1.11	5736 a		24					

Crystal	max	effective	density	output	decay time
material	Z	Z	g/cm ³	photons/keV	ns
Nal:Tl	53	51	3.7	40	230
BGO	83	73	7.1	8	300
LSO:Ce	71	66	7.4	28	40
LYSO	71	54	5.4	28	53
GSO:Ce	64	59	6.7	7.5	56
BaF ₂	55	54	4.1	2	0.8
"New" promis BGO may ha	ing crystal mate	rials: LaBr ₃ , Ce	Br₃ and TlBr		

The second		
RH	Scatter correction techniques	
	 Metz / Wiener filtering Asymmetrical energy window Dual energy window Dual photopeak window Weighing of detected events (WAM) Channel ratio method Photopeak energy distribution analysis Position dependent scatter correction Stationary / Non-stationary deconvolution Iterative reconstruction techniques Neural network Pixel by pixel spectral analysis Regularized deconvolution-fitting method Scatter-free imaging (CFI) Holospectral imaging Factor analysis of medical image sequences 	
\$2018	Single scatter simulation techniques	139

UNIVERSITY OF COPENHAGEN

RIGSHOSPITALET

189

Maximizing Sensitivity by Total-Body PET

~40-fold increase for adult total-body imaging

~20-fold increase for pediatric total-body imaging

~4-fold increase for single organ imaging

<u>\$2018</u>

UNIVERSITY OF COPENHAGEN

RIGSHOSPITALET

Completed EXPLORER Scanner

