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State of the Art: Iterative CT  
Reconstruction Techniques1

Owing to recent advances in computing power, iterative 
reconstruction (IR) algorithms have become a clinically 
viable option in computed tomographic (CT) imaging. 
Substantial evidence is accumulating about the advantages 
of IR algorithms over established analytical methods, such 
as filtered back projection. IR improves image quality 
through cyclic image processing. Although all available so-
lutions share the common mechanism of artifact reduc-
tion and/or potential for radiation dose savings, chiefly 
due to image noise suppression, the magnitude of these 
effects depends on the specific IR algorithm. In the first 
section of this contribution, the technical bases of IR are 
briefly reviewed and the currently available algorithms re-
leased by the major CT manufacturers are described. In 
the second part, the current status of their clinical imple-
mentation is surveyed. Regardless of the applied IR algo-
rithm, the available evidence attests to the substantial 
potential of IR algorithms for overcoming traditional limi-
tations in CT imaging.
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Computed tomographic (CT) tech-
nology has seen remarkable in-
novations in the past decade 

that have substantially improved the 
diagnostic performance of this modal-
ity and steadily increased its clinical 
indications. Since its first clinical in-
troduction by Sir Godfrey Hounsfield 
and James Ambrose in 1972 (1,2), the 
evolution of CT technology has mainly 
been driven by advances in hardware. 
During subsequent decades, important 
milestones have included the introduc-
tion of electron-beam CT in the mid-
1980s (3), spiral (helical) CT imaging 
in 1989 (4), and multi–detector row CT 
in 1998 (5–7). Currently, the major CT 
manufacturers offer a variety of 64- (8), 
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Abbreviations:
AIDR = adaptive iterative dose reduction
ASIR = adaptive statistical iterative reconstruction
BMI = body mass index
CNR = contrast-to-noise ratio
FBP = filtered back projection
IR = iterative reconstruction
IRIS = iterative reconstruction in image space
SAFIRE = sinogram-affirmed iterative reconstruction
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Essentials

 n Iterative reconstruction (IR) tech-
niques allow for substantial radia-
tion dose savings through noise 
reduction in CT image processing.

 n IR can be used to improve image 
quality and reduce noise through-
out the body, particularly in obese 
patients.

 n Besides improvements in general 
measures of image quality, an in-
creasing number of reports are 
emerging on enhanced diagnostic 
accuracy and artifact suppression 
with use of IR.

 n Special attention should be paid to 
quantitative CT imaging applica-
tions, as the use of IR may alter 
standards established on the basis 
of prior analytical image recon-
struction methods.

 n Robust data regarding the impact 
and safety of IR in the clinical set-
ting are available; thus, routine 
implementation of IR in CT proto-
cols should be strongly considered.

 n While a multitude of reports high-
light the promise of IR to enhance 
diagnostic performance and 
reduce radiation at CT, actual ex-
amples of adjustment to lower 
radiation dose settings to fully 
implement the benefits of IR algo-
rithms in daily clinical practice are 
still limited.

256- (9), and 320-detector (10) single-
source or dual-source CT systems (11). 
However, the increased number of de-
tector rows and detector technology 
are only one domain of CT evolution.

While advances in CT hardware con-
tinue to expand the boundaries of phys-
ical limitations, increases in computing 
power have opened additional pathways 
for improving the performance of this 
modality via enhanced data process-
ing methods, such as reconstruction 
techniques. The most prominent exam-
ple of recent years is the renaissance 
of iterative reconstruction (IR) CT al-
gorithms. IR approaches are not new 
and were, in fact, the initially proposed 
method for data reconstruction in the 
early days of CT technology during the 
1970s (2). However, due to its mathe-
matically demanding properties and the 
large amount of data in CT imaging, un-
til recently IR has not been practical for 
clinical purposes. Instead, this recon-
struction technique became the default 
method for nuclear medicine emission 
tomography imaging modalities with 
lower spatial and temporal resolution, 
such as single photon emission CT and 
positron emission tomography, because 
of the smaller data volumes and less 
complex data handling (12). The less 
perfect, albeit much faster, analytical ap-
proach of filtered back projection (FBP) 
has become the standard reconstruction 
method for diagnostic CT.

FBP has been established in clinical 
routine due to its ability to generate 
CT studies of adequate image quality 
in a robust and fast manner. Despite 
its overall acceptable performance, CT 
studies that are reconstructed with FBP 
can be affected by high image noise, 
artifacts (eg, streak artifacts), or poor 
low-contrast detectability in specific 
clinical scenarios. For example, data 
acquisition with reduced tube output 
or CT imaging of obese patients is of-
ten compromised by high image noise; 
high-density structures, such as calci-
fications or stents, result in blooming 
artifacts; metallic implants or bone 
structures might lead to severe streak 
artifacts. These particular shortcom-
ings of FBP likely have driven the re-
naissance of IR algorithms along with 

general technical evolution providing 
the required computational power. Fur-
thermore, the increasing number of CT 
examinations worldwide and the asso-
ciated radiation dose to the population 
have clearly fostered the rediscovery of 
IR technology as a promising tool to de-
crease radiation requirements via noise 
reduction.

In this contribution, we review the 
technical bases of IR and describe the 
currently available algorithms released 
by the major CT manufacturers. Fur-
ther, we survey the current status of 
their clinical implementation. Regard-
less of the applied IR algorithm, the 
available evidence attests to the sub-
stantial potential of IR algorithms for 
overcoming traditional limitations in 
CT imaging.

Technical Background

The exact underlying computational al-
gorithms of the currently available IR 
algorithms are mostly considered pro-
prietary and only partly revealed by 
the manufacturers. However, published 
data indicate that these algorithms can 
differ substantially with respect to the 
underlying assumptions of data acqui-
sition, data processing, system geome-
tries, and noise characteristics. Never-
theless, the following sections attempt 
to provide an objective description of 
the currently available IR techniques.

Pertinent Principles of CT Data 
Acquisition
The fundamental goal of CT data ac-
quisition and reconstruction is to as-
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sign an attenuation value to each voxel 
of a three-dimensional volume. Data 
acquisition is performed by transmit-
ting a fan of photons in multiple angles 
through the body to an array of detec-
tors. The data at each detector repre-
sent the sum of the attenuation of all 
tissues through which the beam has 
passed; this is the “raw data.” Recon-
struction algorithms use the raw data to 
determine attenuation values for each 
voxel; differences between reconstruc-
tion techniques involve determining 
how this attenuation value is assigned 
in the final image. There are two major 
classes of reconstruction algorithms: 
analytical and iterative.

Analytical Image Reconstruction–FBP
Knowledge of the basic properties of 
FBP is crucial to understand the ben-
efits of IR. Analytical reconstruction 
algorithms such as FBP are based on 
the assumption that both the measure-
ment process and the projection data 
are represented by continuous func-
tions. In a simplified model, the x-ray 
beam is collimated to a pencil shape 
and moved subsequently parallel to a 
linear x-ray detector array. Then, the 
x-ray source is rotated by an angle a 
and the process is repeated. The in-
tensities measured at the detector 
are mathematically described as an 
integral function for a specific angle a 
and a particular linear shift position of 
the x-ray tube (Fig 1). The reconstruc-
tion process is the solution of the re-
sulting integral equations by inversion 
(back projection). The back pro jection 
that describes the propagation of the 
measured projection data into the im-
age domain is traditionally combined 
with a filter component (eg, Ram-Lak 
filter). The filter compensates for the 
effect of the so-called low-pass blur 
that occurs because of the differ-
ent numbers of projections passing 
through the center and the periphery 
of an object. In clinical practice, fur-
ther variations of the filter (kernels) 
can be chosen, which are contingent 
upon a compromise between spatial 
resolution and image noise. Increasing 
compensation of the low-pass blur in-
creases the “sharpness” of the image, 

Figure 1: Simplified schematic of CT data reconstruction. Traditionally, several simplifications concerning 
the data acquisition process are made in the context of FBP: pencil-beam geometry of the x-ray, focal spot 
as an infinitely small point, intensity measured on a point located at the detector cell center. Regarding a 
single x-ray, photons with a known intensity are transmitted from the x-ray source through an object to the 
detector. According to the law of attenuation, the transmitted intensity decreases exponentially due to ab-
sorption within the object resulting in a lower measured intensity. Multiple x-rays result in the measurement 
of intensity profiles in the CT detector. By preprocessing, intensity values are transformed into attenuation 
values (projection data). Then, projection data are filtered using different reconstruction algorithms (kernels) 
to create specific image characteristics for soft-tissue or high-contrast visualization. Finally, the measured 
projection data are propagated into the image domain (back projection). Multiple projections are needed to 
solve the mathematical system with multiple equations and variables to generate the final CT image.

Figure 1 

but also increases image noise. Differ-
ent kernels enable optimized depiction 
of soft-tissue or high-contrast struc-
tures, such as bone or lung tissue. It 
is a characteristic of FBP that image 
sharpness and image noise are directly 
coupled: The sharper the image, the 
higher the image noise. With the evo-
lution of CT hardware, adaptations, 
such as interpolation methods or use 
of the Feldkamp algorithm or other 
three-dimensional methods, have been 
applied to compensate for fan-beam 
and cone-beam geometries, respec-
tively. Those approaches, however, still 
remain approximations and interpola-
tions to satisfy underlying assumptions 
such as a point x-ray source, a pencil 
x-ray beam, and the point of detec-
tor elements, which are prerequisites 
for the implementation of the Radon 
transform. The main advantages of 
this approach consist in its robustness 

and speed. A major limiting feature of 
FBP is that it fails to account for image 
noise that results from Poisson statisti-
cal variations in photon number across 
the image plane; practically speaking, 
this means that a reduction in radia-
tion dose translates into an increase 
in image noise. High image noise in-
terferes with the delineation and low-
contrast detectability of a structure, 
so that certain minimal radiation dose 
requirements need to be fulfilled to 
generate a diagnostic CT data set. 
Lowering image noise by choosing 
“smoother” kernels for image recon-
struction will result in impaired spatial 
resolution with use of a conventional 
FBP technique.

Iterative Image Reconstruction
In general, the process of data acquisi-
tion can be described by the following 
formula: p = Hf + n, where the measured  
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projection data p is related to the real 
data f (attenuation coefficient) through 
a projec tion process H and the ad-
ditional noise n. The image recon-
struction averages the solution of this 
equation that can be achieved by two 
mathematically different iterative con-
cepts: algebraic algorithms and statisti-
cal algorithms.

The principle of iterative image algo-
rithms is based on six key steps (Fig 2).  
For a better understanding of the the-
ory and complexity of iterative image 
reconstruction, Figure 3 illustrates a 
simplified model. Leaving additional 
noise n aside, the algebraic algorithm H 
solves a simple system of linear equa-
tions, where the projection value is 
the sum of two attenuation coefficients 
along each projection line. In the early 
1970s, the first IR algorithm—algebraic 
reconstruction technique—was imple-
mented, disregarding the additional 
noise n. Later on, two modified algo-
rithms were developed to improve the 

Figure 2: Schematic representation of the principle steps of iterative image algorithms. Following the CT 
acquisition process (measured projections), a first image estimate is generated. An x-ray beam is simulated 
via forward projection to obtain simulated projection data, which are then compared with the measured 
projection data. In case of discrepancy, the first image estimate is updated based on the characteristics of 
the underlying algorithm. This correction of image and projection data is repeated until a condition predefined 
by the algorithm is satisfied and the final image is generated.

Figure 2 

performance: simultaneous iterative 
reconstruction technique and simulta-
neous algebraic reconstruction tech-
nique. For further details, we refer to 
previous literature (13–15). However, 
as computational power was limited in 
the early days of CT technology, IR al-
gorithms were not practical for clinical 
application.

The example mentioned above also 
illustrates that the complexity of IR 
algorithms rapidly increased when ad-
ditional components of the data acqui-
sition process or image characteristics 
were integrated. In addition to different 
sources of image noise (eg, statistical 
photon distribution, electronic noise), 
the geometry of modern CT systems 
(eg, shape and size of the detector and 
the focal spot, distances between the 
x-ray tube, the isocenter, the detector, 
etc) contributes substantially to the 
projection process.

Basically, the mathematical model 
of IR methods consists of two parts: 

the so-called data term combined with 
a regularization term (or prior term). 
While the data term is a fitting model 
of the observed projection data, the 
regularization term often incorporates 
the nonuniformities of the CT system, 
such as noise. In a so-called statistical 
IR, a weighting term is introduced into 
the data term that assigns low weight 
to data with high statistical uncertainty 
(high noise) and high weight to data 
with low statistical uncertainty (low 
noise). Data fitting can be mathemat-
ically achieved by different statistical 
methods, such as maximum likelihood, 
least squares, or maximum a posteri-
ori estimators. Variations of both the 
data and the regularization term result 
in different characteristics, mainly af-
fecting the handling of image noise and 
artifacts.

Hybrid Algorithms
So-called hybrid algorithms com-
bine both analytical and iterative 
methods in different combinations. 
In one arrangement, the initial image 
is generated by the use of analytical 
methods (raw data domain), and iter-
ative methods are focused to optimize 
image characteristics, for example, 
noise, in the image domain. In an-
other pairing, an iterative algorithm 
can be directly implemented into the 
reconstruction process to focus on 
image improvements of an initial im-
age estimate that is generated by an 
analytical method. In the literature, 
the term hybrid IR usually refers to 
algorithms that mainly decrease image 
noise by iterative methods. In con-
trast, the term model-based iterative 
reconstruction usually refers to algo-
rithms that implement models of the 
acquisition process, image statistics, 
and system geometry. However, we 
find it important to emphasize that the 
clinical performance of IR algorithms 
is not necessarily related to the com-
plexity of the method. Consequently, 
we do not further distinguish between 
both approaches in the clinical section 
of the manuscript. Currently commer-
cially available IR algorithms are uti-
lizing a broad spectrum of the above-
described principles.
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Vendor-specific IR Approaches

GE Healthcare
Adaptive statistical iterative reconstruc-
tion.—In late 2008, GE Healthcare 
(Waukesha, Wis) introduced their first 
hybrid adaptive statistical iterative re-
construction (ASIR) algorithm for clinical 
use (16). ASIR, unlike FBP, performs re-
construction of the CT data sets by mod-
eling the system statistics in the process 
(17–21), using information obtained from 
the FBP algorithm as a building block for 
each individual image reconstruction. 
The ASIR model integrates matrix al-
gebra to convert the measured value of 
each pixel to a new estimate of the pixel 
value. This pixel value is then evaluated 
and is compared with the ideal value that 
is predicted with noise modeling. The 
process is repeated in successive itera-
tive steps until the final estimated and 
ideal pixel values ultimately converge. 
ASIR is blended with traditional FBP in 
10% increments according to user pref-
erence. However, similar to other IR 
techniques, a higher percentage of ASIR 
in the reconstruction can result in degra-

Figure 3 

dation of image quality, with a somewhat 
unfamiliar, almost “plastic” texture to the 
images (22,23).

Veo.—Veo, initially introduced as 
model-based iterative reconstruction, 
is the second-generation IR algorithm 
introduced by GE Healthcare (24). The 
calculation process of Veo is complex 
and exceeds the scope of this article. 
We therefore refer to the publications 
by Yu et al (25) and Thibault et al (26) 
for more detailed descriptions. In brief, 
this algorithm incorporates an extensive 
three-dimensional model of the data ac-
quisition process, including system op-
tics (eg, geometry of the x-ray source, 
cone-beam shape, detector characteris-
tics), in addition to the models of the 
statistical noise and the prior term. The 
model of the system optics describes 
how each element of a scanned object 
is projected onto the detector, disre-
garding the simplified assumptions of 
FBP. Veo assumes a three-dimensional 
volume of each voxel element and takes 
a focal spot with known dimensions, as 
well as an active area of the detector, 
into account. Veo also models the sta-
tistical distribution of the measured 

data from the physics of the interaction 
of x-rays with matter. Similar to other 
IR solutions, parts of model-based iter-
ative reconstruction can be initialized 
with a FBP reconstruction to facilitate 
a relatively fast convergence. Then, 
all voxels of the image volume are up-
dated within one complete iterative 
cycle. This extensive modeling and its 
complexity are demanding on computa-
tional power and time; currently, recon-
struction times range between 10 and 
90 minutes depending on the number 
of images, which roughly equals 0.2 to 
0.5 images per second (27). This po-
tential delay between data acquisition 
and availability of images for interpre-
tation has to be considered in clinical 
practice, for example, for emergent in-
dications.

Philips Healthcare
iDose4.—In 2010, Philips Healthcare 
(Best, the Netherlands) introduced their 
approach to IR techniques with iDose4. 
The iDose4 reconstruction algorithm first 
analyzes the projection data, identifying 
and correcting the noisiest CT measure-
ments (poor signal-to-noise ratio or very 

Figure 3: Simplified model of an alge-
braic IR cycle. Four different attenuation 
coefficients, in a 2 3 2 pixel matrix, are 
represented by five projections (p) at 
three different angles (two acquired in 
horizontal, two in vertical, and one in 
oblique directions). The matrix is succes-
sively updated by stepwise back 
projection. The corrected attenuation 
coefficients can be used to generate 
synthesized projection data (P’) via for-
ward projection. A subsequent cycle can 
be initiated until a stop criterion is 
satisfied.
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low photon counts). A model including 
the photon statistics is applied to each 
projection for the detection of very noisy 
measurements. Through an iterative 
process, the noisy data are penalized 
and edges are preserved. This process 
ensures that the attenuation gradients 
of underlying structures are retained, 
thus preserving spatial resolution while 
allowing a substantial noise reduction. 
The noise left after this process is prop-
agated to the image space; however, the 
propagated noise is highly localized and 
can be removed to support the desired 
level of dose reduction. This technique 
aims at preventing photon starvation 
artifacts (streaks, bias) before image 
creation and maintaining image quality 
while avoiding the artificial appearance 
of images that has been typical of earlier 
generation IR techniques.

From an operative point of view, the 
percentage of dose reduction (from 0% 
to 80%) should be chosen before the 
acquisition, while iDose4 reconstruc-
tion levels (from 0 to 7) can be selected 
before the scan or after the acquisition 
of raw data. To maintain the same im-
age quality and noise of FBP, a propor-
tional iDose4 level should be selected 
according to the chosen percentage of 
dose reduction (28). However, a higher 
iDose4 level can be applied to increase 
image resolution. Consequently, the 
user is able to prioritize a goal of dose 
reduction, image quality improvement, 
or a weighted compromise between 
both goals (29).

Iterative model reconstruction.— 
Iterative model reconstruction is the 
second-generation IR algorithm intro-
duced by Philips Healthcare in 2012. In 
contrast to iDose4, iterative model re-
construction aims at accounting for not 
only the noise behavior of the image but 
also the data statistics, image statistics, 
and system models during its iterative 
cycle (30). To our knowledge, however, 
as of the time of this writing further de-
tails about this very recently introduced 
algorithm have not yet been made avail-
able in the imaging literature.

Siemens Healthcare
Iterative reconstruction in image 
space.—In 2008, Siemens Healthcare 

(Forchheim, Germany) released their 
first-generation iterative reconstruction 
algorithm, iterative reconstruction in 
image space (IRIS) (31). This approach 
is based in the image domain, where an 
initial image is reconstructed from the 
raw data upon which three to five itera-
tions of the algorithm are then applied, 
with the goal of reducing noise and en-
hancing object contrast step-by-step.

Sinogram-affirmed iterative recon-
struction.—Sinogram-affirmed iterative 
reconstruction (SAFIRE) is the second-
generation IR algorithm released by 
Siemens Healthcare in 2010, which in-
corporates an IR technique that utilizes 
both raw data and image data iterations 
with up to five strength levels available 
for adaptation of the regularization 
term to control for image impression 
and noise reduction. The strength is 
not related to the number of iteration 
loops (32).

Similar to traditional IR, SAFIRE 
performs an initial reconstruction using 
a weighted FBP, after which two differ-
ent correction loops are introduced into 
the reconstruction process. In the first 
loop, new synthetic raw data (from a 
forward projection) are compared with 
the original raw data to derive correc-
tion projections that are then used to 
reconstruct a correction image. The de-
tected deviations are again reconstruct-
ed using the weighted FBP, and the loop  
is repeated a number of times depend-
ing on the scan mode. The second cor-
rection loop occurs in image space, 
where noise is removed from the im-
age through a statistical optimization 
process. Noise can be locally estimated 
and removed by using a dynamic raw-
database noise model that, during each 
iteration, predicts the variance of the 
image noise in different directions 
in each image pixel and adjusts the 
space-variant regularization function 
correspondingly. Noise reduction oc-
curs almost solely in image space, thus 
reducing the requirement to return to 
raw data space. The corrected image 
is compared with the original, and the 
process is repeated a num ber of times 
depending on the examination type 
(33,34). SAFIRE can reconstruct up to 
20 images per second (35), allowing the 

reconstruction of a typical thorax exam-
ination of 30 cm in 15 seconds.

Advanced modeled iterative recon-
struction.—Recently, Siemens released 
their third-generation IR algorithm. Ad-
vanced modeled iterative reconstruc-
tion comprises three modifications, 
compared with previous algorithms 
(36): (a) the use of a weighted FBP 
in the loop, which aims at improved 
removal of artifacts based on geomet-
rically nonexact reconstruction opera-
tors; (b) computations commence with 
up to two iterations, with the goal of 
removing geometric imperfections such 
as cone-beam artifacts; (c) the statis-
tical modeling performs a local signal-
to-noise ratio analysis to decompose 
data into information and noise ac-
cording to the model. Compared with 
SAFIRE, the analysis incorporates not 
only nearest-neighbor data but also a 
larger area.

Toshiba Medical Systems
In the initial IR algorithm developed 
by Toshiba Medical Systems (Otawara, 
Japan), adaptive iterative dose reduc-
tion (AIDR), the image noise reduction 
occurred in the reconstruction (image) 
domain. This IR technique required that 
the original high-noise images undergo 
several loops of iteration to reduce the 
image noise until the desired noise 
level is achieved (37,38). More recently 
this technique has been replaced by an 
AIDR system using a three-dimensional 
processing algorithm (AIDR 3D) (39). 
This reconstruction algorithm is based 
on IR performed not only in the recon-
struction domain but also in the raw-
data domain. In the raw-data domain, 
AIDR 3D processing takes into consid-
eration the quantum noise derived from 
the amount of x-ray photons that reach 
the detector and the electrical noise 
from the CT system; the algorithm also 
uses the raw-data domain in a model 
accounting for the specific scanner 
geometry and a statistical noise model 
to reduce noise (37,40). Finally, in an 
effort to maintain the noise granularity 
and render the image more “natural,” 
a weighted blending is applied to the 
original reconstruction and the output 
of this iterative process (41).
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Clinical Applications

The current evidence on the clinical 
implementation of IR into CT protocols 
shows substantial promise for major 
improvements in image quality, chiefly 
noise reduction—with subsequent radi-
ation dose reduction—and artifact sup-
pression. The former suggests the op-
portunity for substantial radiation dose 
savings by mitigating the contrarian re-
lationship between dose and noise that 
governs the use of FBP. However, exact 
estimates of dose reduction in clinical 
practice are difficult to derive from pub-
lished data because studies comparing 
various IR algorithms of the same ven-
dor are scarce and comparisons of dif-
ferent vendors are largely missing. This 
may be partly due to the fact that virtu-
ally all IR techniques are vendor-specif-
ic with limited applicability to other CT 
systems. As expectations concerning 
image quality can substantially differ 
between institutions, careful attention 
to specific data acquisition protocols 
is required when reviewing literature 
about IR technology.

Furthermore, recent data indi-
cate that also acquisition parameters 
of FBP protocols could be improved 
by means of quality management, 
such as periodical audits (42). Con-
sequently, the impact of IR in terms 
of radiation dose reduction might be 
partly overestimated. One should also 
keep in mind that there is neither an 
official definition of terms such as low 
dose or even ultra-low dose, which are 
frequently used in connection with IR 
techniques, nor a consensus on the best 
indicator (CT dose index, dose-length 
product, size-specific dose estimate,  
etc) of radiation dose (43). Moreover, 
the current literature on IR technol-
ogy in CT imaging is mainly focused 
on image quality and radiation dose. 
However, investigations of the diagnos-
tic performance of IR and the resulting 
clinical outcome are largely missing.

Practical Considerations
From a practitioner’s point of view, 
the integration of IR does not intro-
duce major workflow changes as com-
pared with the use of FBP. After data 

acquisition, the technologist simply 
selects the appropriate IR reconstruc-
tion algorithm (kernel) and the desired 
strength level (ASIR, iDose4, SAFIRE), 
if applicable. Except for Veo—which is 
currently only available with a standard 
soft-tissue kernel—all IR algorithms 
can be combined with a specific re-
construction algorithm, for example, 
soft tissue, bone, lung, et cetera. In 
general, the choice of the IR algorithm 
and its strength level, if available, influ-
ences the image impression and noise 
characteristics. As a result, the selec-
tion of the institutionally preferred 
IR technique is a specific clinical task 
germane to the individual preferences 
for image quality: For instance, a more 
aggressive noise reduction may be ben-
eficial for the detection of low-contrast 
structures such as hypovascular liver 
lesions, whereas CT angiography ex-
aminations may benefit from strategies 
aiming at improving spatial resolution 
or decreasing artifacts, rather than 
noise reduction. With first-generation 
IR algorithms in particular, a substan-
tial noise reduction might be associated 
with an “oversmoothing” of the image, 
leading to a blotchy appearance of the 
IR-reconstructed studies (22,23). In 
addition, second-generation IR algo-
rithms allow for a more effective arti-
fact reduction, such as streak or metal 
artifacts. However, these effects are not 
necessarily related to the complexity of 
the IR algorithm. A practical consider-
ation is that because of the possibly un-
familiar overall image impression, radi-
ologists might initially feel inclined to 
reject the routine implementation of IR 
algorithms and question their diagnos-
tic accuracy compared with traditional 
FBP techniques. Commonly, however, 
such concerns will be dispelled after an 
initial learning curve and increasing fa-
miliarity with the IR image impression.

Phantom Experiments
Initial reports on the various IR prod-
ucts were largely based on studies in 
which phantom models were used. 
Given the purported benefits of IR, 
studies generally compared some 
combination of various image-quality 
parameters, including noise, signal-

to-noise ratio, contrast-to-noise ratio 
(CNR), low-contrast visualization, and 
spatial resolution. Ghetti et al (44,45) 
used Catphan (The Phantom Labo-
ratory, Greenwich, NY ), a specific 
phantom for the evaluation of medi-
cal imaging equipment, and dedicated 
three-dimensional spatial resolution 
phantoms to compare FBP with IRIS 
and SAFIRE, respectively, and found 
that both Siemens products preserved 
spatial resolution while decreasing 
image noise when radiation dose was 
kept constant. Attenuation values were 
unchanged between the IR and FBP al-
gorithms, which led to proportionally 
increased CNR and low-contrast res-
olution when the iterative techniques 
were used. SAFIRE has the ability to 
vary the iterative strength level from 1 
to 5, and the authors found that image 
noise reduction increased from 10% 
to 60% with increased strength. Simi-
lar studies comparing FBP with AIDR 
(37) and iDose (46) also found that 
the iterative products preserved spa-
tial resolution while decreasing image 
noise when identical acquisition pa-
rameters were used. iDose4 provided 
image noise reduction of 11%–55%, 
depending on the iDose level, which 
resulted in improved low-contrast res-
olution compared with FBP acquired 
at the same dose level and equivalent 
low-contrast resolution compared with 
FBP acquired at lower doses. AIDR, 
which does not provide the option 
to select between different iterative 
strengths, provided noise reductions of 
35%–44%. A more recent study by Mi-
eville el al (47) compared ASIR, Veo, 
iDose4, and FBP and reported that the 
model-based IR product, Veo, resulted 
in superior image quality compared 
with the other three techniques, par-
ticularly with respect to spatial reso-
lution. The authors further describe 
improved low-contrast detectability 
with this algorithm, even at decreased 
radiation dose levels.

In addition to more visually recog-
nizable methods, a valuable parameter 
for the evaluation of image quality with 
IR is the noise power spectrum (NPS). 
The NPS graphically represents both 
image noise (defined by the area under 
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the curve) and noise texture (reflected 
in the shape of the curve). Most IR algo-
rithms affect NPS graphs similarly—the 
area under the curve (noise) is reduced 
while the peak of the curve shifts to-
ward lower frequencies. This particular 
effect is specifically reported with the 
use of several IR techniques, including 
ASIR and Veo (47), IRIS (44), SAFIRE 
(45), and iDose4 (46). The perceived 
consequence is an unfamiliar visual ap-
pearance that is commonly described 
as plastic-like, paint-brushed, blurry, 
blotchy, or over-smoothed, which can 
be objectified by NPS analysis (45). IR-
FBP blending and variable user-speci-
fied iterative strength levels are two 
techniques the vendors have utilized in 
their attempt to mitigate this unfamiliar 
and often undesired textural alteration.

Overall, phantom models have ver-
ified the feasibility of IR techniques in 
reducing image noise while maintaining 
other image quality parameters, and 
these studies have led to an ever-ex-
panding body of literature demonstrat-
ing similar findings in vivo.

Head and Neck
IR use in the head and neck has shown 
utility in decreasing dose, improving 
image quality, and mitigating artifacts 
(Fig 4). At least two studies demon-
strated a reduction in radiation dose 
associated with cervical spine CT to a 
level comparable to that of conventional 
radiography in trauma patients (48,49). 
Radiation dose decreases in the brain 
ranging from 20% to 40% have been 
shown by using ASIR, iDose, IRIS, and 
SAFIRE (50–54). CT brain perfusion 
imaging, traditionally associated with 
relatively high radiation doses, may be 
well suited to exploit this benefit, with 
initial studies showing dose reduc-
tions of 20% (55). Model-based IR has 
shown improved delineation of small 
arteries that are traditionally difficult 
to image, including arteries within 
the posterior fossa (56), the anterior 
spinal artery (57), and the artery of  
Adamkiewicz (58). SAFIRE utilization 
in cervical spine CT has resulted in 
better depiction of the intervertebral 
disks and ligaments (59,60). Fine bone 
structures, such as the temporal bone 

Figure 4: Coronal reformations of contrast-enhanced CT study of the head in a patient with subcutaneous 
abscess in the left cheek. Compared with, A, FBP, the visualization of the abscess formation is improved by noise 
reduction with use of the, B, Veo IR algorithm. The surrounding abscess membrane is clearly depicted (arrow).

Figure 4 

Figure 5: Transverse sections from a CT angiographic study of the carotid arteries in a patient with metallic 
dental hardware. Compared with, A, FBP, there is a reduction of metal artifacts with use of the, B, Veo IR algorithm.

Figure 5 

or paranasal sinuses, often necessitate 
thinner section reconstructions that 
are subject to increased noise second-
ary to quantum mottle; again, this has 
shown to be an area in which the noise-
reduction properties of IR techniques 
may be put to good use (61,62). ASIR 
has been shown to enhance the delin-
eation between white and gray matter 

(63). Finally, model-based IR prod-
ucts (such as Veo) or those containing 
specific metal artifact-reduction algo-
rithms can substantially reduce com-
mon artifacts in head and neck imag-
ing, such as photon starvation caused 
by the shoulders and streak artifact 
caused by dental hardware (64,65) 
(Fig 5).
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Thorax
Currently available IR products have 
consistently been shown to allow radi-
ation dose reductions without compro-
mising the diagnostic image quality of 
routine chest CT, with reported dose 
reductions ranging from 27% to 80% 
(28,66–73). One group described that 
Veo was able to depict pulmonary nod-
ules despite radiation dose reductions 
to levels comparable to those of conven-
tional chest radiographs (74). Studies 
evaluating IR in thin-section pulmonary 
CT examinations have shown similar 
results, with comparable or superior 
image quality of IR compared with tra-
ditional FBP reconstructions (73,75,76) 
(Fig 6). One study concluded that CT 
images reconstructed with IR result in 
better visual scores than conventional 
FBP reconstruction for the assessment 
of lung architecture, such as interlobu-
lar septa, the centrilobular region, and 
small bronchi/bronchioles; IR was also 
superior at delineating pathologic find-
ings such as reticulations, tiny nodules, 
altered attenuation patterns, and bron-
chiectasis (77). Similar findings have 
been observed in a pediatric patient 
population with cystic fibrosis (78).

While IR may allow greater con-
sistency of emphysema quantification 
at low-dose CT (79), another study 
showed that quantitative measures of 
emphysema and air trapping are sub-
stantially influenced by IR algorithms 
(80). This highlights an important 
point regarding IR—anything that sig-
nificantly alters image reconstruction 
has the potential to influence quanti-
tative methods, potentially arriving at 
diverging results when compared with 
standards set by using FBP. Fortunately, 
this seems not to be the case in one of 
the most typical applications of IR in 
thoracic CT, pulmonary nodule assess-
ment. Both phantom-based (81,82) and 
in vivo studies (29) have suggested that 
lung nodule volumetry is robust and 
reproducible throughout a wide range 
of tube voltage and tube current-time 
product exposure settings. Further-
more, IR utilization does not negatively 
affect the performance of lung nod-
ule computer-aided detection systems 
(83). From a qualitative standpoint, 

Figure 6: Coronal reformations of nonenhanced chest CT study (effective dose, 1.1 mSv) reconstructed 
with, A, C, FBP and, B, D, iDose. In the study using IR, the overall image quality is improved and beam-hard-
ening artifacts at the level of the shoulders are reduced. (Image courtesy of D. Utsunomiya, MD, Faculty of 
Life Sciences, Kumamoto University, Kumamoto, Japan.)

Figure 6 

CT imaging with IR maintains diagnos-
tic accuracy compared with FBP in the 
identification and characterization of 
ground glass opacities, part-solid nod-
ules, and solid nodules, while allowing 
a dose reduction of approximately 75% 
(84,85).

IR has shown considerable poten-
tial in CT pulmonary angiography, with 

estimated radiation savings of 25%–
40% (66,70) (Fig 7). While no stud-
ies have compared the accuracy of IR 
versus FBP CT pulmonary angiography 
in the detection of pulmonary emboli, 
researchers have shown preservation 
of reader confidence, with no change 
in the rate of nondiagnostic studies 
(86). Indeed, there may be a role for 
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image quality optimization with use of 
IR in CT pulmonary angiographic ex-
aminations independent of radiation 
dose, for example, in larger patients 
in whom high noise levels limit the 
interpretability of small subsegmental 
pulmonary arteries. Researchers have 
advocated the use of higher strength 
IR in these patients to reduce the like-
lihood of a noninterpretable examina-
tion. Of note, while there is concern 
regarding the undesirable textural 
effects seen in images reconstructed 
with high-strength IR, the effect on 
image quality has been reported to be 
more modest for vascular structures 
than for the pulmonary parenchyma 
itself (70,87).

Cardiac Imaging
Like other applications, the major dem-
onstrated benefit of IR in coronary CT 
angiography to date has been a reduc-
tion in image noise without substan-
tial effects on attenuation compared 
with FBP reconstructions of the same 
data. This results in improvements in 
subjective image quality and vessel 
assessment (22,35,87–96) (Fig 8).  
These findings were reported for all 
commercially available IR products ex-
cept for Veo, with which experiences 
are limited to date. For coronary CT 
angiographic studies, AIDR has shown 
improved objective and subjective im-
age quality with simulated half-dose 
acquisitions compared with full-dose 
FBP reconstructions of the same data 
(97). Likewise, improved image quality 

Figure 7: Transverse sections from a CT pulmonary angiographic study displayed at the level of the pulmonary trunk. Compared with, 
A, FBP, the use of, B, ASIR results in noise reduction and slightly enhanced CT attenuation. A further enhancement of the visual image 
quality impression is achieved with, C, Veo.

Figure 7 

at a dose reduction of 25% compared 
with FBP have been reported for ASIR 
(70), and equivalent diagnostic accu-
racy and image quality with dose re-
ductions up to 72% have been dem-
onstrated (98). Clinical observational 
studies after implementation of ASIR 
report 44%–54% reductions in effec-
tive dose with cardiac CT applications 
(87,89). Reduced-dose protocols using 
IRIS have shown improved image qual-
ity compared with routine acquisitions 
using FBP, with dose savings up to 62% 
(93); likewise, SAFIRE demonstrated 
improved image quality compared with 
FBP with simulated dose reductions of 
50%–80% (35,99). Radiation reduc-
tions of 55%–63% have been reported 
without compromising image quality 
using both fixed- and adaptive-dose 
protocols with iDOSE reconstructions 
(90,91,100).

Body mass index (BMI)-adaptive 
reconstructions using predefined ac-
quisition settings based on patient 
body habitus offer a potential solu-
tion (92,98), while other groups have 
proposed patient-specific adaptive-
dose procedures that adjust scan set-
tings on the basis of allowable image 
noise (70,101). In this regard, Yin et 
al (102) recently demonstrated that 
in a population with a broad range of 
BMI values, the use of IR after apply-
ing a 50% tube current reduction for 
every selected kilovoltage preserves 
image quality and diagnostic accuracy 
at coronary CT angiography compared 
with standard FBP.

In addition to noise and dose re-
duction, early evidence suggests that 
IR products may have a role in reduc-
ing beam-hardening and blooming ar-
tifacts associated with coronary artery 
stents and heavily calcified vessels. 
Reductions in measured stent volumes 
indicating less blooming artifacts and 
image noise have been reported along 
with improved in-stent visualization 
(93,103–105), and the noise-reduction 
properties of IR may allow increased 
utilization of high-resolution (ultra-
thin section, usually 0.23-mm spatial 
resolution) coronary CT in-stent eval-
uation. Traditionally, these examina-
tions are limited by high levels of noise 
secondary to photon starvation. Early 
studies have shown improvements in 
noise, blooming artifacts, in-stent vi-
sualization, and diagnostic accuracy 
with use of IR in conjunction with 
high-resolution reconstruction kernels 
and acquisitions (106–108). Likewise, 
Renker et al (109) compared IRIS to 
FBP in patients with Agatston scores 
of 400 or greater and showed that 
IRIS resulted in significantly lower im-
age noise (P = .011–.035) and calci-
fication volume (P = .019 and .026), 
significantly higher subjective image 
quality (P = .031 and .042), and sig-
nificantly improved per-segment diag-
nostic accuracy for detection of signifi-
cant stenoses (P = .0001), with overall 
diagnostic accuracy of 95.9% for IRIS, 
compared with 91.8% by using FBP. 
Note that these reductions in calcium 
volume may be a relevant consider-
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ation when performing nonenhanced 
coronary artery calcium scoring ex-
aminations, another time-honored 
quantitative CT imaging application. 
One study showed decreased noise 
but also decreased Agatston and volu-
metric calcium scores due to reduced 

Figure 8: A, B, Three-dimensional volume-rendered reconstructions, C, D, transverse sections, and, E, F, 
oblique maximum intensity projections of a coronary CT angiographic study (80 kVp, 250 mA). Images are 
reconstructed by using AIDR (A, C, E) and FBP (B, D, F). There is a reduction in image noise and improve-
ment in image quality with AIDR compared with FBP reconstructions.

Figure 8 

blooming artifacts when ASIR was 
used compared with FBP (110,111); 
the practical implication is that cal-
cium scoring using IR may result in 
incorrect risk stratification, as the 
population-based studies that pro-
vided calcium score nomograms used 

FBP reconstructions. In contrast, 
IR does not appear to significantly  
alter the analysis of plaque composi-
tion and plaque burden quantification 
(88,112,113).

Abdomen and Pelvis
A number of advantages have been 
demonstrated with use of IR in ab-
dominal and pelvic imaging. Princi-
ple among them is noise reduction, 
which allows concomitant dose re-
duction. Routine abdominal and pel-
vic CT performed with commercially 
available IR software allows equivalent 
to improved subjective and objective 
image quality at dose reductions of 
25%–50% compared with full-dose 
FBP (114–120). Newer IR algorithms 
have been shown to allow diagnos-
tic quality acquisitions with dose-re-
duced protocols performed with only 
50 mA, providing 75% dose reduc-
tions in selected patients compared 
with standard acquisition parameters 
(121,122) (Figs 9, 10).

CT angiography.—Like IR in coro-
nary CT angiography, body CT an-
giographic applications should allow 
significant dose reductions while 
maintaining diagnostic image quality 
(32,123), and model-based IR products 
may lead to improved accuracy when 
measuring vascular diameter and evalu-
ating vessel wall attenuation (124).

Liver CT.—IR application in liver 
CT has been validated in both phantom 
and in-vivo studies, which have shown 
that dose reductions between 41% and 
50% are possible without sacrificing 
image quality (125,126). This may be 
particularly relevant in hepatic perfu-
sion imaging, which has traditionally 
involved relatively high radiation dose 
values. A recent study showed that the 
use of AIDR allowed a 45% dose re-
duction by applying a tube current of 
120 mAs instead of the standard 250 
mAs without affecting image quality or 
quantitative hepatic perfusion values 
(127).

While IR can increase CNR by re-
ducing noise alone, there has also been 
interest in improving small lesion con-
spicuity by further enhancing CNR with 
combined low-dose acquisition and IR 
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techniques (Fig 11). Lower kilovoltage 
scans increase attenuation (contrast), 
while IR mitigates the increased noise 
associated with these low-dose scans; 
this approach has been shown to be 
effective in increasing CNR in low-
dose arterial, portal, and late vascular 
phase image acquisitions (128). While 
several studies have demonstrated no 
significant improvement in the detec-
tion of small low-contrast liver lesions 
(129,130), this strategy has been 
shown to be effective in improving 
the detection of hypervascular liver 
lesions such as hepatocellular carci-
noma (131). IR-based improvements 
in subjective image quality and CNR 
also manifest in CT portovenography, 

Figure 9: Coronal reformations of contrast-enhanced abdominal CT study in a patient with liver metastasis (arrowhead). Beam-hardening artifacts (arrow) due to 
metallic clips are seen. Images reconstructed with, A, FBP and SAFIRE strengths, B, 1, C, 3, and, D, 5. Increasing the IR strength reduces image noise and beam-
hardening artifacts.

Figure 9 

Figure 10: Coronal reformations of CT angiographic study of the abdominal vasculature (effective dose, 2.8 mSv) reconstructed with, A, FBP and, B, iDose4. The IR 
algorithm reduces image noise (B) and improves the image quality of three-dimensional volume-rendered reconstructions (C). (Image courtesy of C. Liang, MD, and  
Z. Liu, MD, Guangdong General Hospital, Guangzhou, China.)

Figure 10 

in which significantly improved image 
quality of volume-rendered images has 
been demonstrated (132).

CT enterography.—Two studies on 
patients with Crohn disease have shown 
that CT enterography with IR can lead 
to statistically significant dose reduc-
tions between 35% and 50% without 
loss of image quality or observer con-
fidence compared with FBP (133,134).

CT colonography.—CT colonogra-
phy is becoming a widely recognized 
screen ing tool for colorectal cancer. 
As for all screening application in a 
priori healthy populations, ionizing 
radiation exposure should be kept 
to an absolute minimum. Studies 
have shown that reduced-dose (25 

vs 50 mAs) studies using ASIR have 
equivalent image quality with de-
creased noise compared with those 
using FBP (135), and half-dose re-
constructions using SAFIRE produce 
equivalent image quality as full-dose 
reconstructions using FBP (136). Fur-
thermore, a porcine colon phantom 
study comparing FBP, ASIR, and Veo 
reconstructions at various radiation 
dose acquisitions showed statistically 
significant improvement in per-polyp 
detection sensitivity with use of ASIR 
and significantly reduced image noise 
with both IR techniques (137) (Figs 
12, 13).

CT urography.—Initial experiences 
(138,139) have demonstrated that the 
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in-vivo applications of IR to CT urogra-
phy allow a significant radiation dose re-
duction between 45% and 84% without 
reducing image quality and without af-
fecting diagnostic confidence. Kulkarni 
et al (139) demonstrated that even 
when the dose was reduced from 9.9 
to 1.8 mGy, images were still deemed 
diagnostically acceptable for reliable 
detection of urinary stones. Further-
more, this extreme dose reduction did 
not impair the evaluation of the rest of 
the abdomen and pelvis for noncalculus 
findings.

IR in Pediatric Imaging
The potential stochastic effects of ion-
izing radiation in pediatric patients 
have raised considerable concern over 
the past several years within both the 

Figure 11: Transverse sections from contrast-enhanced abdominal CT study reconstructed with, A, FBP and SAFIRE strengths, B, 1, C, 3, 
and, D, 5. With increasing IR strength, a reduction in image noise is observed, allowing for better delineation of regional changes in hepatic 
perfusion (arrows).

Figure 11 

medical and lay press (140,141). Pe-
diatric patients are thought to have 
increased radiation sensitivity of their 
immature tissues, generally have a 
longer life expectancy and therefore 
more time to develop stochastic ef-
fects, and often undergo repeat diag-
nostic testing. It is no surprise then 
that there have been strong efforts in 
limiting ionizing radiation exposure in 
this population, as, for instance, prom-
inently exemplified by the Image Gently 
campaign (142). A num ber of CT tech-
niques have been developed and are 
emerging, including high-pitch, low-
tube-voltage protocols; patient-specific 
protocol optimization; increased and 
more effective use of shielding de-
vices; and an overall emphasis on staff 
training and attention. IR appears to 

be well suited as an additional tool to 
provide diagnostic image quality with 
the lowest doses possible (32,35). 
An increasing number of studies are 
reporting that noise, CNR, signal-
to-noise ratio, and subjective image 
quality are significantly improved with 
the use of IR algorithms in pediatric 
patients (46,143–146). In pediatric 
cardiac CT, Han et al (145) reported 
a significant noise reduction of 34%, 
and substantial increase of 41% and 
56% in CNR and signal-to-noise ratio, 
respectively, with the use of SAFIRE 
compared with FBP. Depending on the 
body region, the potential dose reduc-
tion provided by the implementation 
of IR techniques ranges between 22% 
and 48% without impairing diagnostic 
confidence (51,147–149).
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IR in Obese Patients
CT examinations in the obese popula-
tion are challenging. Noise is intrin-
sically higher secondary to reduced 
photon transmission and scatter, com-
promising both image quality and di-
agnostic accuracy (150,151). Several 
techniques can improve image quality 
in obese patients, such as BMI-adaptive 
scan protocols (generally using higher 
kilovoltage acquisitions) and half-scan 

Figure 12: Transverse sections of CT colonography study (80 mAs, 100 kVp) reconstructed with, A, 40% ASIR and, B, FBP. 
Application of the ASIR algorithm (A) to low-dose CT colonography reduces image noise and improves overall image quality 
compared with FBP (B).

Figure 12 

Figure 13: Three-dimensional surface-rendered endoluminal displays of CT colonography study (80 mAs, 
100 kVp) reconstructed with, A, 40% ASIR and, B, FBP. Note that image noise causes a mildly speckled 
appearance of the colon wall on FBP image (B), which is reduced on ASIR image (A).

Figure 13 

reconstruction techniques using dual-
source CT (152,153). Unfortunately, 
both techniques result in significantly 
increased radiation dose (P < .01). The 
noise-reduction properties of IR may 
hold particular appeal in the evaluation 
of obese individuals, with IR applica-
tions showing reductions in both image 
noise and radiation dose in this popu-
lation (35,154,155). Kligerman et al 
(156) demonstrated a significant noise 

reduction using iDose compared with 
FBP in obese patients (BMI  30 kg/
m2) undergoing CT pulmonary angiog-
raphy. Moreover, the implementation 
of iDose level 5 provided noise values 
that were comparable to those in non-
obese control subjects (average BMI, 
22 kg/m2). In coronary CT angiogra-
phy, Wang et al (155) showed a poten-
tial dose reduction of 50% facilitated 
by the use of SAFIRE in obese patients 
without sacrificing image quality. This 
is consistent with the results of other 
studies that have shown radiation dose 
reductions of 32% and 50% in ab-
dominal-pelvic CT imaging (157) and 
coronary CT angiography, respectively 
(158).

IR in Emergency Radiology
IR algorithms have also been deemed 
effective in emergency conditions. They 
are able to reduce total radiation dose 
without any loss in image quality in 
applications that included acute aor-
tic syndrome (20% decrease in dose 
length product using ASIR compared 
with FBP) (123) and trauma surveys of 
the brain, cervical spine, chest, abdo-
men, and pelvis (20% dose decrease 
using ASIR compared with FBP) (49). 
Importantly, one study also demon-
strated that IR implementation (in this 
study, iDose4) does not significantly de-
lay reconstruction time or speed (159).
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Summary

Increases in available and affordable 
computer power have fostered the de-
velopment of a variety of IR algorithms 
and their application to diagnostic CT 
imaging. While the specific algorithms 
differ, the clinical basis for the benefits 
of IR implementation primarily involves 
image noise reduction, which leads to 
improved objective and subjective im-
age quality compared with those using 
FBP reconstructions. Decreased noise 
alone results in improved image quality 
in previously challenging areas, such as 
ultra-high-resolution imaging and the 
evaluation of obese individuals. Perhaps 
more important, the noise-reduction 
properties of IR techniques hold poten-
tial to enable designing CT acquisition 
protocols at reduced radiation dose 
levels without sacrificing image qual-
ity, which is particularly attractive in 
screening examinations (eg, lung and 
colorectal cancer), perfusion studies, 
pediatric imaging, and for repeat ex-
aminations. Besides enhancements in 
general measures of image quality, an 
increasing body of evidence describes 
improvements in the diagnostic accu-
racy of various CT imaging applications, 
for example, via artifact reduction, by 
use of IR techniques. However, while 
an ever greater number of scientific re-
ports highlight the substantial promise 
of IR techniques to enhance the diag-
nostic performance and to incur drastic 
reductions in radiation requirements 
at CT, major evidence confirming such 
initial findings in larger patient popula-
tions is still mostly lacking, along with 
professional society guidelines on the 
appropriate routine implementation of 
IR techniques. However, we will likely 
observe a gradual development of a 
more meaningful evidence base and 
of pertinent guidelines with the more 
widespread availability of IR algorithms 
and increasing familiarity of the medi-
cal imaging community with their use. 
Refinement of current IR techniques 
will likely result in more effective and 
universal clinical adoption, and emerg-
ing and future algorithms promise to 
expand the role of IR to novel diagnos-
tic imaging applications. Overall, it ap-

pears safe to predict that in the fore-
seeable future IR will replace traditional 
analytical methods as the preferred CT 
image reconstruction method.
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